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BLIND RECOVERY OF THE SECOND CONVOLUTIONAL ENCODER OF 

A TURBO-CODE WHEN ITS SYSTEMATIC OUTPUTS ARE 

PUNCTURED 
�
�

Mélanie Marazin1-2, Roland Gautier1-2, Gilles Burel1-2 
�

 
Abstract - Turbo-codes are error-correcting codes used in powerful digital transmission 
systems to ensure a low binary error rate. This paper presents different approaches 
aimed at recovering a convolutional encoder in a non-cooperative context like in military 
interception or cognitive-radio applications. In this context, the intercepted data are the 
only known information. It also explains the residual indetermination due to 
“equivalent” coders and it gives the link between an NRNSC encoder and its RSC 
equivalent form. Furthermore, it reports on a new approach developed to recover the 
interleaved version of the second encoder of a Turbo-code when its systematic outputs 
are punctured. 
 
�������� – Cognitive-Radio Applications, Turbo-Code, Convolutional Encoder, 
Interleaver, Blind Estimation, Non-Cooperative Communications, Interception. 
 

1. Introduction 
 

Error-correcting codes enhance the quality of communications by enabling the binary data 
stream to better withstand channel impairments such as noisy transmission channel, 
interference or channel fading. For this purpose, error-correcting codes introduce some 
redundancy in the informative binary data stream. Turbo-codes, first introduced in [2], belong 
to a family of error-correcting codes designed to reach the best correction capacity through an 
iterative decoding scheme. Figure 1 shows the generic form of a Turbo-code consisting of a 
parallel concatenation of two convolutional encoders and one interleaver. The information 
data are encoded by the first encoder and the interleaving version of this information data are 
encoded by the second one. In the most recent digital communication systems, such as the 3rd 
generation mobile system presented in [7] and [8], the systematic parts of the second 
convolutional encoder located after the interleaver are not transmitted to increase the Turbo-
code rate. 

 
Figure 2 presents the differences between cooperative and non-cooperative context. This 

figure shows that in a cooperative context, every parameter of the two encoders and of the 
interleaver, are all known; the signal obtained on the receiver side can be demodulated and 
decoded to correct the errors due to the propagation channel and to the imperfections of 
digital transmission systems. But, in the case of military, spectrum surveillance or cognitive-
radio applications, the parameters of the encoders and interleaver are unknown. Therefore, in
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a non-cooperative context, the intercepted data are the only available information. In such 

situation, the encoders and interleaver parameters have to be blindly estimated, with no prior 

knowledge of the true ones used to encode the binary data stream on the transmitter side. 

 

 
Figure 1: Turbo-code 

 

This paper introduces a method dedicated to the blind recovery of the second 

convolutional encoder of a Turbo-code located after the interleaver in the case where its 

systematic parts are punctured. It explains why the previous methods developed in [1] and [4] 

are inefficient in this specific configuration. At first, section  2 gives the principle of 

convolutional codes and introduces the concept of equivalent code, which is essential for 

encoder recovery. Furthermore, it presents the link between the NRNSC encoder and its 

equivalent form RSC, explained in [5]. Section  3 describes the approach we developed from 

the techniques proposed in [3] and [6] in order to blindly estimate the convolutional encoder 

parameters in a well-conditioned case. Moreover, it also explains briefly how the generator 

matrix of a convolutional code can be recovered by application of the methods developed in 

[1] and [4]. Section  4 reports the new approach on the blind estimation of the second encoder 

in the case of a classical implementation of the Turbo-code. Finally, section  5 shows an 

example of blind recovery of the Turbo-code convolutional encoders. 

 

 

                     
Figure 2: Cooperative versus non-cooperative context 
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2. Convolutional Encoder 
 

2.1. Principle and mathematical model 
 
A convolutional code is an error-correcting code defined by three parameters (n,k,K), 

where n is the number of outputs, k is the number of inputs, and K is the constraint length of 

the code. Convolutional encoding can be modeled and implemented by shift-registers. Each 

block of n encoded bits at the output depends (in the case without feedback) on K blocks of k 

information bits, which means that each of the n encoded bits at the output is a linear 

combination of the content of k K×  shift-register cells. The encoder can be easily described 

by using its generator polynomial form given hereafter: 

 

 

1 1 1,1 ,1

1 1, ,

( ) ( ). ( ) ( ). ( )

                                  

( ) ( ). ( ) ( ). ( )

k k

n n k k n

c x m x g x m x g x

c x m x g x m x g x

= + +

= + +







⋯

⋮ ⋮

⋯

 (1) 

  

where the information data binary stream is represented by k binary sequences ( )im x  (with               

1, ,i k= ⋯ ). Moreover, the encoded binary data are represented by n sequences cj(x) 

(with 1, ,j n= ⋯ ), and , ( )i jg x , in the general case, stand for the generator polynomial rational 

fraction associated to the input and output, i and j, respectively.  

 

The generator polynomial rational fractions are all components of the code generator matrix, 

( )xG , used to rewrite equation (1) as follows:  

 

 ( ) ( ). ( )x x x=c m G  (2) 

 

where ( )1( ) ( ) ( )nx c x c x=c ⋯ , ( )1( ) ( ) ( )kx m x m x=m ⋯ and ( )xG given as follow: 

 

 
1,1 1, 1,

,1 , ,

( ) ( ) ( )

( )

( ) ( ) ( )

k n

k k k k n

g x g x g x

x

g x g x g x

=
 
 
 
 

G

⋯ ⋯

⋮ ⋱ ⋮ ⋮

⋯ ⋯

 (3) 

 

In the general case, , ( )i jg x  are polynomial rational fractions. But, as found in the NRNSC 

(No Recursive and No Systematic Code) version of a convolutional code, they can be only 

simple polynomials with no denominator polynomial, which means that the outputs are only 

direct linear combinations of the inputs, since there is no feedback part in the encoder. In this 

configuration, it is possible to rewrite equation (2) in matrix form. For that, consider the 

binary vectors, m and c, which are defined below: 

 

- m: the vector of information data, with ( ) ( )1 1 1 1

1

0 0 0

2 2

0

1 , , , , ,, ;,, ; kkm m m m mm= =mm m ⋯⋯⋯ ⋯  

(where ( )1 2, , ,t t t t

km m m=m ⋯  represents the k-bit introduced at the time t); 

- c: the vector of all encoded data, with ( ) ( )1 1 1 1

1

0 0 0

2 2

0

1 , , , , ,, ;,, ; nnc c c c cc= =cc c ⋯⋯⋯ ⋯  (where 

( )1 2, , ,t t t t

nc c c=c ⋯  represents the n-bits encoded at the time t). 
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And, the encoding matrix, denoted F, is given below: 

 

 

1 2

1 2

K

K

 
 =  
  

F F F

F F F F

⋯

⋯

⋱ ⋱ ⋱

 (4) 

 

 

where the sub-matrices  (with 1, , )j j K=F ⋯  contains the j
th
 binary coefficient of all generator 

polynomial: 

 

 

1,1 1,2 1,

,1 ,2 ,

( ) ( ) ( )

( ) ( ) ( )

n

j

k k k n

g j g j g j

g j g j g j

 
 =  
  

F

⋯

⋮ ⋮ ⋮

⋯

 (5) 

 

Finally, the equation (2) rewritten under matrix form gives: 

 

 .=c mF  (6) 

 

The other well known convolutional code configuration or convolutional code type is 

RSC (Recursive Systematic Code). The term “systematic” means that the k first output 

sequences ( )1( ) ( )kc x c x⋯  are exact replicas of the input information sequences 

( )1( ) ( )km x m x⋯ ; on the other hand, the term, “recursive”, indicates that the output can be re-

injected at the input side as the feedback part. It is worth noting that, according to only 

mathematical considerations, any convolutional code can be described by either an NRNSC 

form or an RSC one. This point will be detailed hereafter. 

 

2.2. Equivalent encoder 
 
“Equivalent” encoder or “equivalent” code means that the codewords, or the encoded 

sequences, generated by two equivalent encoders belong to the same codeword set. Let C1 and 

C2 be equivalent encoders, then the sequences 1( )xc  and 2 ( )xc  generated by the two encoders 

span the same subspace Θ, but usually they are different. In practice, the decoding of an 

encoded sequence, ( )xc by two equivalent encoders, C1 and C2, in order to recover information 

data, usually leads to two decoded sequences, 1( )xm  and 2 ( )xm , where 1 2( ) ( )x x≠m m . 

Furthermore, if we consider the blind parameters identification problem, we can see that it may 

be a problem, because two equivalent encoders span the same subspace and if we have to 

identify the specific parameters of one encoder from encoded binary data, it will be 

mathematically impossible to distinguish two or more encoders in the same equivalence class 

excepted the case where the class contain only one element (which is not the case in practice). 

The encoded data obtained by encoding a binary data stream with C1 will allow one to identify 

one version of possible encoders belonging to the same equivalence class as C1, but liable to be 

different from C1. Even more, it is impossible to recover the true information data.  

 

It is possible to determine if two encoders belong to the same equivalence class. In fact, 

two encoders, C1 and C2, are equivalent if the cyclic versions of their coding matrix, defined 
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in equation (4), and their concatenation have the same rank. A cyclic version, denoted F , of 

period T (with T>K) given hereafter: 

  

 

1 K

1 2 K

K

K

2 1

T 2.T 1

T

2.T 1

                                   −

−

 
 
 
 
 =  
 
 
 
 
 

2
F F F

F F F

F F

F

F F

⋯ ⋯ ⋯ ⋯ ⋯

⋯

⋯⋮

⋱ ⋱⋮

⋱⋮

⋱ ⋮⋮

⋮ ⋱ ⋮⋮

 (7)  

 

For different value of T, two encoders, C1 and C2, are equivalent if: 

 

 

(1)

(1) (2)

(2)
rank rank rank

 
   = =     

 

F
F F

F
 (8) 

 

Let us illustrate this notion with a C(3,2,3) encoder. The generator matrix, noted G , is 

composed by (2×3) generator polynomial represented in octal: 

 

1 2 3

4 1 7

 
=  
 

G  

 

The information data, denoted m, encoded by G gives the encoded data, noted c. 

 

[ ]1 0 1 0 1 0 1 1 1 0=m  and [ ]0 1 1 1 1 0 1 1 0 0 1 1 1 1 1=c  

 

With the intercepted data, it is possible to obtain two generator matrices, denoted 1G  and 2G : 

 

1 2

1 2 3 6 5 1
  and  

4 1 7 1 2 3

   
= =   
   

G G  

 

Equation (7) and (8) are used to determine if these encoders belong to the same equivalence 

class. The cyclic version and the rank of these matrices are computed for different period (T):  

 
(1)

(1) (2)

(2)
15, 30T rank rank rank

 
   = = = =     

 

F
F F

F
 

(1)

(1) (2)

(2)
35, 70T rank rank rank

 
   = = = =     

 

F
F F

F
 

(1)

(1) (2)

(2)
40, 80T rank rank rank

 
   = = = =     

 

F
F F

F
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Thus, it is possible to deduce that C1 and C2 are equivalent but the decoding of the intercepted 

data, c, with the second encoder ( )2G  gives the data 'm : 

 

[ ]' 1 0 1 0 1 0 0 1 1 0=m  

 

And, this data, 'm , are not the true information data: 

 

[ ] [ ]
                                                 '

1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0

≠
≠

m m
 

 

Therefore, this method allows to determine if two encoders belong to the same equivalence 

class but it is impossible to distinguish the encoder used at the transmitter side. This notion of 

equivalent encoder is of key-importance because it makes the problem of blind encoder 

identification non-trivial. Even when an equivalent encoder is identified, the obtained 

information data are not the true ones.  

 

2.3. Generator matrix of NRNSC encoder to RSC equivalent 
encoder  

 

In practice, an equivalence class of convolutional encoders will always contain, at least, 

one NRNSC form and its equivalent encoder in RSC form. Given that each NRNSC encoder 

has its equivalent RSC form, and that it is essential to get the right encoder (used at the 

transmitter side), but not its equivalent, the issue is to transform the generator matrix, in 

NRNSC form, of a convolutional encoder into its RSC equivalent form: 

 

• NRNSC encoder of rate 1/ n  (i.e 1k = ): 

For such an NRNSC encoder, the RSC equivalent encoder generator matrix is easily obtained 

by dividing each generator polynomial of NRNSC encoder by the first one ( )1,1( )g x . The 

equivalent RSC encoder is expressed as follows: 

 

 
1,1

1
( ) . ( )

( )
RSC NRNSCx x

g x
=G G  (9) 

 

Let us illustrate this transformation with the example of a C(2,1,3) encoder:  

 
2 3 3( ) 1 1NRNSC x x x x x = + + + + G  

   

and the equivalent RSC encoder given by equation (9): 

 

 
3

2 3 2 3

( ) 1
( ) 1

1 1

NRNSC
RSC

x x x
x

x x x x

 + += =  + + + + 

G
G   

  

• NRNSC encoder of rate /k n : 

In this case, where 1k > , it is more difficult to get the equivalent generator matrix. Let us 
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assume that the generator matrix, ( )NRNSC xG , is given by equation (3) and that the matrix 

composed of the k first groups of the generator polynomials given hereafter is denoted ( )xQ : 

 

 ( )
( ) ( )

( ) ( )
1,1 1,

,1 ,

k

k k k

g x g x

x
g x g x

=
 
 
  

Q

⋯

⋮ ⋱ ⋮

⋯

 (10) 

 

Computing the inverse of matrix ( )xQ  leads to:  

 

 1  ( )
( )

det( ( ))

adj x
x

x

− =
Q

Q
Q

 (11) 

 

and the generator matrix of the equivalent RSC form is given by: 

 

 1
( ) ( ). ( )

RSC NRNSC
x x x

−=G Q G  (12) 

 

This matrix is composed of Ik the k k×  identity matrix and of ( )k n k× −  polynomial rational 

fractions, such as: 

 

 ( )

( )
( )

( )
( )

( )
( )

( )
( )

1, 1 1,

1,1 1,1

, 1 ,

1,1 1,1

1 0

0 1

k n

RSC

k k k n

f x f x

f x f x

x

f x f x

f x f x

+

+

=

 
 
 
 
 
 
  

G

⋯

⋱ ⋮ ⋮

⋯

 (13) 

 

where ( )1,1( ) det ( )f x x= Q  is called the feedback polynomial part, and the polynomials 

, ( )i jf x , { }1, ,i k∀ ∈ ⋯ and { }1, ,j k n∀ ∈ + ⋯ are the numerator polynomials of the non 

systematic outputs of the RSC encoder. Let us illustrate this transformation by detailing these 

calculations for an NRNSC C(3,2,3) encoder whose generator matrix is given by: 

 

 ( )
2 2

1 1

1 1
NRNSC

x x
x

x x x

+
=

+ +
 
 
 

G   

 

2

1
So, the matrix (x) is ( ) ,

1

x
x

x
=  
  

Q Q  ( )
2

1

3

1 1
and 

11

x
x

xx

− =
+

 
  

Q . 

 

Using equation (12) to calculate ( )RSC xG  leads to:  

 

 ( )

3

3

2 3

3

1
1 0

1

1
0 1

1

RSC

x x

x
x

x x

x

+ +
+=

+ +
+

 
 
 
 
  

G , where the feedback polynomial 3

1,1( ) 1f x x= + . 
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3. Blind recovery of convolutional encoder 
 

3.1. Blind estimation of the convolutional encoder parameters 

 
It is now worth focusing on the blind estimation of convolutional encoder parameters in 

the non-cooperative context. The method proposed in [3] permits estimations of the 

interleaver period and of the code rate for a block code by taking benefit from the redundancy 

introduced by the error-correcting code. A similar approach was used in [6] when the 

intercepted sequence was severely corrupted. From both methods, we developed an approach 

to be applied to the convolutional code in the case of a perfect transmission (no transmission 

error).  

 

Its principle is to reshape columnwise the intercepted data bit stream under matrix form. 

This matrix, denoted iH , is computed for different values of i where i is the number of rows. 

For each matrix, the rank in the Galois Field GF(2) is computed. This rank has two different 

performances: 

 

• If  i is not a multiple of the number of outputs ( .  with i nα α≠ ∈ℕ ): 
The columns of iH  are all independent therefore iH  is a full rank matrix.  

 

• If  i is a multiple of the number of outputs ( .  with i nα α= ∈ℕ ): 
iH  is not a full rank matrix because some among of the columns are linear combinations of 

the others induced by the redundancy introduced by the code. In this case, the rank of iH  is 

given by equation (14). 

 

 ( ) . .( 1),  . , 
i

k
rank i k K i n

n
α α= + − ∀ = ∈H ℕ  (14) 

 

So, the encoder parameters, n, k and K, are identified by application of a linear regression 

method. 

 

Let us illustrate this approach with a C(3,2,3) code. The matrices, iH , are built, and then 

the rank is computed for increasing values of i. Figure 3 presents the obtained values of rank 

as a function of i. It is worth noting that:  

- The rank is equal to i, except when i is a multiple of n and the method permits to 

estimate that n is equal to 3.  

- The line joining all the points for .i nα=  has a slope equal to 2/3. Equation (14) 

allows to deduce that k= 2. 

- Finally with the same line and equation (14), it is easy to estimate that K= 3. 
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Figure 3:  rank(Hi)=fk,n,K (i) => 

Estimation of the encoder parameters 

 

 

3.2. Blind estimation of the generator matrix  
 
Now, it is possible to estimate the generator matrix of the code by applying a part of the 

methods developed in [1] and [4]. The method described in [1] is a general implementation of 

[4]. Both permit a global estimation of n, k, K and G in an iterative way. In these algorithms, 

presented in algo.1, the values of n, k and K are incremented at each iteration and, for each 

iteration, the ( )n k−  systems of ( )1k +  equations have to be solved. 

 

In our method, presented in algo.2, the parameters n, k and K are obtained with the rank 

method and a part of the methods described in [1] and [4] is used to estimate the generator 

matrix. The fact that the rank computation of matrix is easier than an iterative solving of 

linear-equation systems for every combination of n, k and K drove us to improve these 

methods by reducing the total number of equations to be solved. In fact, once n, k and K have 

been estimated, there are only ( )n k−  systems of ( )1k +  equations to be solved to estimate 

G. Moreover, to estimate the parameters of the encoder, two matrices iH  with rank 

deficiency are sufficient. In example presented in subsection 3.1, when i is equal to 18, it is 

possible to estimate the parameters (n, k and K) and to solve the system of 3 equations to 

estimate the generator matrix. 

 

The part of the methods described in [1] and [4] and used, here, to estimate the generator 

matrix allows one to find the NRNSC equivalent form, NRNSCG , of the encoder really used. 

Thus, if the encoder is known to be in the RSC form, the algorithm proposed in subsection  2.3 

can be used to get the generator matrix, RSCG . 
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4. Method of blind recovery of Turbo-coder 

 
4.1. Hypotheses  
 
This section deals with the problem of the blind recovering of convolutional encoders 

used in Turbo-code. The previous section described a method to recover the convolutional 

parameters and the generator matrix. If the encoders of Turbo-code are both in the NRNSC 

form, it is possible to apply this method to estimate the parameters and the generator matrix of 

the convolutional encoders. On the contrary, if the encoders are both in the RSC form and the 

encoder rate is k/(k+1), which means that n = k+1; its direct application to Turbo-coders is 

non-trivial because of the particular configuration of the convolutional encoders. In fact, in 

this case, the systematic part of the second encoder is punctured, which means that the k first 

outputs are not transmitted. The goal of this puncturing is to increase the Turbo-code rate. The 

encoder rate of C1 and C2 are denoted 1R and 2R and the Turbo-code rate given as follows: 

 

 1 2
turbo

1 2

.R R
R

R R
=

+
 (15) 

 

If the k-systematic outputs of the second encoder are punctured, the rate becomes: 

 

 1 2
turbo

1 2 1 2

.

.

R R
R

R R R R
=

+ −
 (16) 

 

The classical implementation of Turbo-code, (i.e. when each encoder is RSC form and 

systematic outputs of the second encoder are punctured) is represented in figure 4. 

( ) ( )

max1-  2 to 

2-      ( )

3- 

4- Estimation of ,  an

 systems of 1  equations 

have to be so

d 

5-

lved

 

  

i

NRNSC

n k

i i

r

K

n k k

ank

−

=

+
⇒

for

H

en

G

d for

Algo. 2: New method 

( ) ( )

max

max

 systems of 1  equations 

have to be 

1-  2 to 

2-       1 to 1

3-            2 to 

4- 

5-           

6-      

7

solved  ,

 

, 

-

 , NRNSC

n k k

n k

n

K

n

k n

K K

− +

=
= −

=

⇒

for

for

for

end for

end for

en

G

d for

Algo. 1: Method described in [1] 

and [4] 
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Figure 4: Turbo-code puncturing 

  

In this specific configuration, for the first encoder, C1, the blind estimation of parameters 

and generator matrix is achievable with the method described in section  3. Moreover, if the 

encoder form is known, the encoded data ( )xc  are decoded to get the information data, ( )xm . 

One should note that the blind determination of the encoder form is out of the scope of this 

paper.  

 

For the second encoder, C2, there are two configurations: 

• The number of outputs n is greater than 1k + : 

In this case, the rate of the second encoder is /k n  with 1n k> +  and after puncturing of k-

systematic part, the outputs are, at least, ( ) 2n k− ≥ . Since this method used the redundancy 

introduce by the code, with only two outputs this redundancy is always present therefore it is 

possible to estimate the parameters and the generator matrix of this encoder. 

 

• The number of outputs n is equal to 1k + : 

 In this case where the rate of the second encoder is ( )/ 1k k +  (i.e. 1n k= + ) with punctured 

systematic part, it remains only one output. In this configuration, the redundancy introduced 

by the code is not present. Consequently, it is impossible to apply directly the method 

described in section 3 to recover the second encoder. 

 

Let us now focus on the case where the encoder rate is 1/ n , the extension of our method to 

the general ( )/ 1k k +  case is still under study. The first idea to extend the method in this 

particular configuration must be to consider the systematic outputs of the first encoder and the 

outputs of the second encoder as being all of the outputs of this encoder. But, the outputs of the 

second ( )' '

2 ( ) ( )nc x c x⋯ and the first ( )1( )c x encoder are not direct linear combinations of the 

same input since the output of the second one are obtained after interleaving of the information 

data. Figure 5 deals with the most critical case, when the encoder rate is equal to1/ 2  

( )1, 2k n= = .  

 
Figure 5: Special equivalent scheme of Turbo-code (k=1, n=2) 
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4.2. Blind estimation of the second encoder 
 
Application of the rank method described in subsection  3.1 to this case gives the number of 

output (n), the constraint length (K) and the size of the interleaver ( el ). It ensues that there are 

( )1n −  non systematic outputs, denoted 'c  (with ( )' '

2' nc c=c ⋯ ) in vector form, as well as the 

vector of information data, m, for C2 recovery. 

 

The block interleaver can be modelled by a permutation matrix 0E  of size e el l× . This 

permutation matrix operates on el -sized blocks, and the global interleaver can be represented 

by a square matrix, E: 

 =
 
 
 
  

0

0

0

E

E
E

E

⋱
 (17) 

 

The vector of all the interleaved data denoted 'm  is equal to ' .=m mE , and with an RSC-type 

encoder the total output stream and the input stream for all 2, ,j n= ⋯  are linked by equation 

(18): 

 

 ' '

1 1
. . . . . . 0
j j j j

= ⇒ + =c G mEG c G mEG  (18) 

 

where iG  contains the binary coefficients of the i
th
 generator polynomial (for all 1, ,i n= ⋯ ) : 

 

 

( )

( 1) ( )

( 1)

(1) ( )

(1) ( 1)

(1)

i

i i

i

i i i

i i

i

g K

g K g K

g K

g g K

g g K

g

−
−

=
−

 
 
 
 
 
 
  

G

⋮ ⋱

⋮ ⋱

⋱ ⋮

 (19) 

 

Since the interleaver operated on el -sized blocks, equation (18) can be rewritten as a vector 

form of size el  on condition to not take into account the overlap-related problem. One should 

note that the interleaver is missing in the first part ( )'

1.jc G  of equation (18). It ensues that the 

number of bits required for the determination of the first generator polynomial is only K 

instead of el ; moreover, these bits have to be taken from every el -bit block. So, for each 

block of size el , this system can be rewritten in vector form as follows:   

 

 
1

' . . . 0
j j

c f m f+ =
0

Ε  (20) 

 

where the vector, '
j

c , is composed of the K first bits from each el -sized block of 
'

jc , and m  

is composed of el  bits of m. The vectors, 1f  and jf , correspond to the K binary coefficients 

of the feedback generator polynomial and to the el  bits of jG , respectively, so that:  
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 [ ] TT

1 1 1
( ) (1) ,  ( ) (1) 0 0

j j j
f g K g f g K g= =   ⋯ ⋯ ⋯  (21) 

 

Now, it is easy to construct and to solve the ( )1n −  systems given hereafter to recover the 

generator polynomials. 

 

 . 0 2,...,
j
f j n= ∀ =C  (22) 

 

with the matrix jC  given by: 

 

 

' '

' '

(1) ( ) (1) ( )

( 1) ( ) ( 1) (2. )

j j e

j j e j e e e

c c K m m l

c l c l K m l m l= + + +

 
 
 
  

C

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮

 (23) 

 

and the vector column f of size ( )eK l+ : 

 
1

0

 
. j

f
f

E f
=
 
 
 

 (24) 

 

This method gives the first generator polynomial ( )1f  and the interleaving version of the 

other generator polynomials. The complete blind estimation of the Turbo-code with recovery 

of the interleaver as well as the determination of encoder type are both out of the scope of this 

paper and will be described in the future. Once the interleaver has been estimated, the 

generator matrix of the encoder is easily obtained after deinterleaving. 

 

5. Example of blind recovery of Turbo-coder 
 

5.1. Description of Turbo-code used 
 

In this section, we can take an example of blind estimation of Turbo-code when the 

systematic output of the second encoder is punctured. Turbo-code presented in figure 6, is 

composed by two identical convolutional encoders, C(2,1,4), and one block interleaver of size 

el  (with 10el = ). These convolutional encoders are the ones used in the UMTS standard [7]. 

 

 
Figure 6: Turbo-code 

 

 

The generator matrix is: 
3

2

2 3

1

( ) 1
( ) 1 1

( ) 1

g x x x
x

g x x x

   + += =   + +  
G  
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The feedback polynomial: [ ]1 1011g =  and the second generator polynomial: [ ]2 1101g = . 

 

The permutation matrix, 0E , of size ( )10 10×  representing one block of the interleaver is 

given graphically on figure 7 (where the element 0 is represented in white and the element 1 

in black) and the global interleaver matrix E on figure 8. With equation (19) we can construct 

the matrix 2G  shown on figure 9 and we can see on figure 10 the effect of the interleaver on 

the generator polynomial 2g , where the product ( )2.EG  is plotted. 

 

 

 
        

 

 

 

Figure 7: Graphical representation of E0 

Figure 8: Graphical representation of E 

 

Figure 9:  Graphical representation of G2 

 
Figure 10: Graphical representation of the 

product E.G2 
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5.2. Blind recovery of Turbo-code 
 

For the first encoder C1, the method explained in section  3 is used to estimate the 

parameters and the generator matrix of this code. The systematic output, 1 1( ) ( )c x m x= , of this 

encoder will be used to recover the second encoder. 

 

In the first step, the method described in subsection  3.1 is used to blindly recover 

parameters of the encoder and the size of the interleaver. Figure 11 represents the values of 

iH  rank as a function of i. We can see on this figure, that the rank is equal to i, except when i 

is a multiple of ( ). en l . It is possible to estimate that ( ). en l  is equal to 20. Furthermore, 

according to the equation (14), when i is a multiple of ( ). en l , the slope is equal to /k n . It is 

easy to determine that / 1/ 2k n =  and to deduce that 10el = . The same equation allows to 

estimate that 4K = . 

 
Figure 11:  rank(Hi)=fk,n,K(i) => C(2,1,4) 

 

In the second step, with the parameters of the encoder and the interleaver, the method 

describe in subsection 4.2 can be used to estimate the first generator polynomial and the 

interleaved version of the second generator polynomial. For that, the system presented in (22) 

has been constructed and resolved. With this system, the vector f obtained is: 

 

[ ]T1 1 0 1 1 0 0 0 0 1 0 1 0 0f =  

 

The K-first bits of this vector corresponds to the binary coefficient of 1g  and the other bits to 

the interleaving version of 2g , noted '

2f . 

 

[ ]T1 1 1 0 1f =  and [ ]T'

2 0 2. 1 0 0 0 0 1 0 1 0 0f f= =E  
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It is worth noting that the first column of matrix '

2G , represented on figure 10, corresponds to 

the vector '

2f . Therefore, this method allows to obtain the good interleaved version of the 

second generator polynomial.  

 

Estimation of the permutation matrix 0E  is not described in this paper but once this matrix 

is obtained, it is easy to deinterleave the vector '

2f . For that, the inverse of the permutation 

matrix is computed and is given graphically on figure 13. The global deinterleaver, matrix 1−E , 

is shown on figure 14. 

 

 
The link between the interleaved version of 2f  and this deinterleaved version is given by: 

 

 1 '

2 0 2.f f−= E  (25) 

 

This equation is used to deinterleaving vector '

2f : 

 

[ ]
[ ]
[ ]

T1 ' 1

0 2 0

T

T

2

. . 1 0 0 0 0 1 0 1 0 0

1 0 1 1 0 0 0 0 0 0

(1, )

f

f zeros le K

− −=

=

= −

E E

 

 

and the second generator polynomial 2f  is obtained. It is also possible to deinterleave the 

global matrix 2G : 

 1 '

2 2.−=G E G  (26) 

 

Finally, if the permutation matrix is recovered, this method permits to estimate all parameters 

of a Turbo-code when the systematic output of the second encoder is punctured.   

 

Figure 12: Graphical representation of E0 

 

Figure 14: Graphical representation of E
-1
 

Figure 13: Graphical representation of E0
-1
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Conclusion 

 
This paper presented an approach developed to estimate convolutional codes in a non-

cooperative context which allows a reduction of the computation cost compared to previous 

algebraic approaches introduced in [1] and [4]. Moreover, it introduced the notion of the 

equivalence class and the necessity to estimate the true encoder and not its equivalent version. 

In this objective, it gives the link between the generator matrix of an NRNSC encoder and its 

RSC equivalent form. 

Finally, by using these methods, it described a new approach aimed at estimating the 

second encoder of a Turbo-code when its systematic outputs are punctured. In this specific 

configuration, used in the most recent digital communication systems, it allowed us to get the 

interleaved version of these generator polynomials.  

These different approaches provide essential parameters in the context of spectrum 

surveillance and cognitive-radio applications as well as in the purpose of building a self-

recovering receiver. 
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