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Hierarchical Space-Time Block Code Recognition
Using Correlation Matrices

Vincent Choqueuse, Koffi Yao, Ludovic Collin, and Gilles Burel

Abstract—The blind recognition of communication parameters
is a key research issue for commercial and military commu-
nication systems. The results of numerous investigations about
symbol timing estimation, modulation recognition as well as
identification of the number of transmitters have been reported
in the literature. But, to our knowledge, none of them have dealt
with the recognition of the Space-Time Block Codes (STBC)
used in multiple transmitter communications. In order to blindly
recognize the STBC of a wireless communication, this paper
proposes a method based on the space-time correlations of the
received signals. Under perfect timing synchronization and under
ideal conditions (full rank channel and a number of receivers
greater or equal to the number of transmitters), it shows that
the Frobenius norms of these statistics present non-null values
whose positions only depend on the STBC at the transmitter
side. A classifier for the space-time code recognition of 5 linear
STBC (Spatial Multiplexing, Alamouti Coding, and 3 Orthogonal
STBC using 3 antennas) is presented. Simulations show that the
proposed method performs well even at low signal-to-noise ratios.

Index Terms—MIMO, space-time coding, electronic warfare.

I. INTRODUCTION

THE Blind recognition of communication parameters is
an intermediate step between signal detection and signal

decoding/demodulation with applications in both commercial
and military communication systems. The development of
self-configurating receivers lies among civilian applications,
whereas military ones include electronic warfare, surveillance
and threat analysis. Some algorithms devoted to the blind
recognition of symbol timing and frequency offset [1] [2],
modulation [3] [4] [5] and propagation channel [6] from the
received signals are available in the literature for Single-Input
Single-Output (SISO) communications. These data can be
used to blindly identify the communication protocol or
standard when it is unknown at the receiver side.

Other investigations conducted in parallel have been devoted
to the development of new technologies aimed at enhancing
the reliability of data transmission in wireless communication
systems. Among them, one of the most promising relies on
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the use of Multiple-Input Multiple-Output (MIMO) systems in
association with Space-Time Codes (STC) [7]. STC is a set
of practical signal design techniques aimed at approaching the
information theoretic capacity of MIMO channels. The class
of linear space-time block codes (STBC) is the major category
of space-time codes and can be divided into subclasses like
Linear Dispersion Codes [8], Orthogonal STBC [9] [10] and
quasi Orthogonal STBC [11]. Currently, some algorithms
can blindly recognize the number of transmitters [12] and
the modulation [13] of MIMO systems without preliminary
knowledge about the propagation channel. Other algorithms
are devoted to the blind decoding/demodulation of the received
signals [6] [14] [15] [16] [17] [18] [19] and [20] under
the assumption that the STBC is known at the receiver side.
However, the blind recognition of STBC remains a research
issue poorly addressed in the literature.

The method proposed in this paper is aimed at blindly
recognizing linear STBC without a priori knowledge about
the number of transmitters, the modulation of the transmitted
symbols and the propagation channel. The only assumption
lies on the perfect estimation of the timing synchronization
(one sample per symbol, optimum sampling time) and on
the properties of the propagation channel (full rank and with
a number of receivers greater or equal to the number of
transmitters). Section II of this article presents the signal
model of the communication. In section III, a characterization
of the STBC based on the Frobenius norms of two space-
time correlations is presented. It is shown that these norms
present peaks at certain time lags whose positions only depend
on the STBC. Using this characterization, the section IV
presents a decision tree classifier for the blind recognition of 5
linear STBC. Finally, the section V summarizes the proposed
algorithm and the section VI reports on the performances.

II. SIGNAL-MODELS

Let us denote matrices by boldface capital letters (e.g. M),
matrix conjugates, transposes and hermitians by superscripts
∗, T and H respectively (e.g. M∗, MT and MH ). Let us
also note column matrices by capital letters with a subscript
index corresponding to the column number (e.g. Mi) and each
matrix element by a capital letter with two subscript indices
corresponding respectively to the row and column number (for
example Mij).

A. Signal model of Linear Space-Time block codes

For any communication using linear STBC, the symbols
to be transmitted are sent in block of ne symbols. A block
of ne symbols is transmitted to a space-time block encoder
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C(S) = [C0(S) · · · Cl−1(S)]

=
[
A0

(
Ine 0ne

0ne iIne

)
S̃ . . . Al−1

(
Ine 0ne

0ne iIne

)
S̃

]
(1)

to generate nt parallel signal sequences of length l. These
sequences are transmitted through nt transmit antennas si-
multaneously in l time periods. Let us denote by the col-
umn vector S = [s1, · · · , sne ]T , a block of ne complex
symbols to be transmitted. Let us also note by C(S) and
Cj(S) (0 ≤ j < l) the transmission matrix and the
(j + 1)th column of this matrix respectively. Under these
notations the transmission matrix of a linear space-time block
code can be expressed under the general form (1), where
S̃ = [�e(s1), · · · ,�e(sne),�m(s1), · · · ,�m(sne)]T denotes
the concatenation of the real and imaginary parts of S and
where Ine is the identity matrix of size ne. The coding
matrices Aj only depend on the STBC. For example, the
coding matrices A0 and A1 of an Alamouti code (see appendix
C) are defined by:

A0 =
(

1 0 1 0
0 1 0 1

)
(2)

A1 =
(

0 −1 0 1
1 0 −1 0

)
(3)

In this paper, the symbols s are assumed to belong to the same
complex linear modulation (≥ 4PSK , ≥ 4QAM ) and to be
independent and identically distributed (i.i.d). For a complex
modulation, the real and imaginary parts of the transmitted
symbols are i.i.d so the symbols s respect the following
condition:

E[�e(s)2] = E[�m(s)2] =
E[|s|2]

2
(4)

B. Signal model of the communication

Let us consider a receiver composed of nr antennas which
is assumed to be perfectly synchronized with the emitter
(one sample per symbol, optimum sampling time). In a non
cooperative environment, the start and the length of the space-
time block code are both unknown at the receiver side. Let
us consider without loss of generality that the first received
column, denoted by Y0, intercepts the (k1 + 1)th column
(0 ≤ k1 < l) of the jth transmitted block, denoted Ck1(Sj).
Under these assumptions, the kth intercepted column, Yk

(k ≥ 0), is described by the following signal model:

Yk = HXk + Bk (5)

with Xk = Cu(Sv) (6)

where u = (k + k1)mod l, v = j + (k + k1)div l, and xdiv l,
xmod l denote respectively the quotient and the remainder
of the division x

l . H corresponds to the nr × nt channel
matrix which is composed of i.i.d. complex Gaussian entries
(Rayleigh channel) and Bk is a vector of size nr representing
the additive noise. The additive noise is supposed to be

Gaussian complex circular and temporally uncorrelated.

Our aim being the blind recognition of the space-time block
code of a communication from N received samples Yk (0 ≤
k < N ), an intuitive way to do it is to measure the space and
time redundancy of the transmitted symbols with space-time
correlations.

III. CHARACTERIZATION BY THE FROBENIUS NORM OF

SPACE-TIME CORRELATIONS

A. Analysis of the space-time correlations

In order to assess the space-time redundancy of a random
complex vector Mk, we define the two space-time correlations,
RM,T (τ) and RM,H(τ) respectively given by:

RM,T (τ) = lim
N→∞

1
N

N−1∑
k=0

E[MkMT
k+τ ] (7)

RM,H(τ) = lim
N→∞

1
N

N−1∑
k=0

E[MkMH
k+τ ] (8)

Note that these two correlations only differ by the term
MT

k+τ and MH
k+τ . Let us consider the space-time correlation

of the transmitted samples X(k). In the following, we only
develop the theoretical expression of the correlation RX,T (τ)
as RX,H(τ) can be obtained in a similar way. According to
the equation (6), the correlation RX,T (τ) can be expressed
with respect to the structure of the Space-Time Code as (9).
Using the signal model of the equation (1), this correlation is
equal to:

RX,T (τ) = lim
N→∞

1
N

N+k1−1∑
u=k1

[
Aumodl

(
Ine 0ne

0ne iIne

)
× E

[(
S̃j+udivl

)(
S̃T

j+(u+τ)divl

)]
×

(
Ine 0ne

0ne iIne

)
AT

(u+τ)modl

]
(10)

The symbols to be transmitted are independent and identically
distributed and respect the equation (4), so the expectation
term can be expressed as:

E
[(

S̃j+udivl

)(
S̃T

j+(u+τ)divl

)]
= δ(udivl − (u + τ)divl)

× E[|s|2]
2

I2ne (11)

where δ(x) denotes the Kronecker delta which is equal to 1
for x = 0 and 0 for x �= 0. The Kronecker delta reflects the
fact that the symbols coming from two different blocks are
independent. Let us decompose u under the form u = vl + w
where 0 ≤ w < l. Using this decomposition and the equation
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RX,T (τ) = lim
N→∞

1
N

N+k1−1∑
u=k1

E
[
Cumodl

(
Sj+udivl

)
CT

(u+τ)modl

(
Sj+(u+τ)divl

)]
(9)

RX,T (τ) = lim
N→∞

E[|s|2]
2N

[
l−τ−1∑
w=k1

Aw

(
Ine 0ne

0ne −Ine

)
AT

w+τ

+ nb

l−τ−1∑
w=0

Aw

(
Ine 0ne

0ne −Ine

)
AT

w+τ

+
N−(nb+1)l+k1−1∑

w=0

Aw

(
Ine 0ne

0ne −Ine

)
AT

w+τ

]
(12)

(11) into the equation (10) lead to (12), where nb = (N −
(l− k1 +1))divl denotes the number of entire received blocks
and where the first and the last sums reflect the fact that the
first and last received blocks are not entire. For N → ∞, the
influence of the non-whole blocks is not significant over the
number of entire received blocks. So, asymptotically nb can
be approximated1 by nb 	 N

l and so:

RX,T (τ) 	 E[|s|2]
2l

l−τ−1∑
w=0

Aw

(
Ine 0ne

0ne −Ine

)
AT

w+τ (13)

In the same manner, we can demonstrate that the space-time
correlation RY,H(τ) is approximately equal to:

RX,H(τ) 	 E[|s|2]
2l

l−τ−1∑
w=0

AwAH
w+τ (14)

At the transmitter side, the equations (13) and (14) show that
the space-time correlations only depend on the structure of
the code and on the modulation. At the receiver side, the
space-time correlation RY,T (τ) and RY,H(τ) are given from
equations (7), (5) and (8), (5) respectively:

RY,T (τ) = HRX,T (τ)HT (15)

RY,H(τ) = HRX,H(τ)HH + RB,H(0)δ(τ)Inr (16)

These correlations depend on the channel matrix H, on the
noise correlation RB,H(0) and on the correlations at the trans-
mitter side. In the next section, we propose a characterization
of the space-time coding based on the Frobenius norm of the
space-time correlations RY,T (τ) and RY,H(τ).

B. Analysis of the Frobenius norm

The Frobenius norm of a matrix M of size n×m, denoted
by ||M||2F , is defined as:

||M||2F =
n∑

i=1

m∑
j=1

|Mij |2 (17)

Let us consider the two Frobenius norms of the space-time
correlations ||RY,T (τ)||2F and ||RY,H(τ)||2F . According to the

1When the receiver intercepts an entire number of blocks, we obtain the
equality on equation (13)

equations (15) and (16), it can be proved that:

Proposition 1: For a full rank channel matrix H of size
nr × nt (nr ≥ nt) and for τ > 0,

||RY,T (τ)||2F = 0 if and only if ||RX,T (τ)||2F = 0(18)

||RY,H(τ)||2F = 0 if and only if ||RX,H(τ)||2F = 0(19)

Proof: See appendices A and B for proof.

As the probability to obtain a rank-deficient Rayleigh channel
with i.i.d entries is small, we propose to recognize the STBC
from the positions τ of the non-null values of ||RY,T (τ)||2F
and ||RY,T (τ)||2F . In fact under the assumption that nr ≥ nt,
the proposition 1 and the equations (13) and (14) show that
the positions of the non-null values provide information on
the length l of the STBC since the Frobenius norms are null
for τ ≥ l. Furthermore, depending on the coding matrices
Aj , the norms are also null for certain τ < l. In the
following, an automatic classifier for the STBC recognition
based on the position of the non-null values of ||RY,T (τ)||2F
and ||RY,H(τ)||2F is exposed.

IV. CLASSIFICATION OF SPACE-TIME CODE BY DECISION

TREE AND PEAK DETECTOR

In this section, we propose a classifier for the blind
recognition of 5 linear STBC using 2 or 3 transmit antennas.
The STBC under consideration are:

1) Spatial Multiplexing (SM) using nt = 2 transmit anten-
nas; one should note that, though Spatial Multiplexing
does not transmit space-time redundancy, it can be
interpreted as in the case of a linear STBC.

2) Alamouti coding using nt = 2 transmit antennas. This
code is an Orthogonal STBC of rate 1.

3) 1st Orthogonal STBC with rate 3
4 using nt = 3

transmit antennas.
4) 2nd Orthogonal STBC with rate 3

4 using nt = 3
transmit antennas.

5) Orthogonal STBC with rate 1
2 using nt = 3 transmit

antennas.
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TABLE I
VALUES OF ||RX,T (τ)||2F AND ||RX,H(τ)||2F WITH RESPECT TO THE

SPACE-TIME CODING (E[|s|2] = 1).

Code τ ||RX,T (τ)||2F ||RX,H(τ)||2F
SM 0 0 nt

> 0 0 0
0 0 2

Alamouti 1 0.5 0
> 1 0 0

0 0 1.6875
3
4
STBC3 1 0.25 0.0625

2 0.125 0.0625
Code 1 3 0 0.0625

> 3 0 0
0 0 1.6875

3
4
STBC3 1 0.125 0.125

2 0.125 0.0625
Code 2 3 0.125 0

> 3 0 0
0 0 3
1 0.0313 0.625
2 0 0

1
2
STBC3 3 0.1563 0

4 0.75 0.125
Code 3 5 0.1563 0

6 0 0
7 0.0313 0

> 7 0 0

These codes are presented in appendix C. The automatic
classification of these STBC from the non-null values of
||RY,T (τ)||2F and ||RY,H(τ)||2F is performed by a decision
tree.

A. Classification by Decision Tree

At the transmitter side, the theoretical norms of
||RX,T (τ)||2F and ||RX,T (τ)||2F are obtained thank’s to equa-
tions (13) and (14). For the 5 STBC under consideration, these
norms are reported on table I. According to the proposition 1,
we propose to classify the space-time coding with the decision
tree of the figure 1. First, the Orthogonal STBC3 with rate 1

2
is recognized by a non-null value of the Frobenius norm at
τ = 4. Then, the presence of the 2nd and 1st Orthogonal
STBC3 with rate 3

2 are detected from a non-null value of the
Frobenius norm at τ = 3 and τ = 2 respectively. Finally, the
norm at τ = 1 is used to discriminate Alamouti Coding and
Spatial Multiplexing. At each node of the tree, the nullity of
||RY,T (τ)||2F is tested. In practise, RY,T (τ) is estimated and
the test of nullity is performed by a hypothesis testing.

B. Detection of null values using hypothesis test

In practise, the space-time correlation RY,T (τ) is un-
known and assessed from the circular convolution (τ =
{0, · · · , N/2}):

R̂Y,T (τ) =
1
N

N−1∑
i=0

YiY
T
(i+τ)modN

(20)

The detection of the null values of ||R̂Y,T (τ)||2F can be
formulated as the following hypothesis test.

• Hypothesis H0: ||R̂Y,T (τ)||2F = 0.

Fig. 1. Decision tree for the recognition of 5 STBC.

• Hypothesis H1: ||R̂Y,T (τ)||2F �= 0.

We propose to apply a preprocessing to adapt, under the hy-
pothesis H0, the statistic R̂Y,T (τ0) to a chi-square distribution.
Let us consider the set of time lag elements, denoted by Ω, for
which the theoretical value RY,T (τ0) = 0 when τ0 ∈ Ω for any
STBC. For the space-time codes of interest, the table I shows
that Ω = {8, 9, 10, · · ·}. Let us denote by vec{R̂Y,T (τ)}, the
column vector of size n2

r which is constructed by concatenat-
ing the nr columns of R̂Y,T (τ). According to the central limit
theorem, vec{R̂Y,T (τ)} is an asymptotically normal estimator
of vec{RY,T (τ)} and so vec{R̂Y,T (τ0)} −→ Nc(0n2

r
, Ψ)

where 0n2
r

is a column vector composed of n2
r null elements

and where Ψ = E[vec{R̂Y,T (τ0)}(vec{R̂Y,T (τ0)})H ] is a
covariance matrix of size n2

r ×n2
r. In practise, this covariance

matrix can be estimated by:

Ψ̂ =
1
|Ω|

∑
τ0∈Ω

vec{R̂Y,T (τ0)}vec{R̂Y,T (τ0)}H (21)

where |Ω| denotes the number of elements of Ω. Then, a
diagonalization of the covariance matrix Ψ̂ is performed to
obtain n2

r decorrelated gaussian laws. The diagonalization is
achieved by applying to vec{R̂Y,T (τ)} a whitening matrix W
of size n2

r × n2
r verifying:

vecd{R̂Y,T (τ)} = W × vec{R̂Y,T (τ)} (22)

with E
[
vecd{R̂Y,T (τ0)}

(
vecd{R̂Y,T (τ0)})H

]
= 2 × In2

r

(23)
where In2

r
is the identity matrix of size n2

r. A whitening matrix
W can be extracted from the covariance Ψ̂. Let us consider the
eigenvalues decomposition of the covariance matrix defined
as Ψ̂ = UΛUH where Λ and U correspond respectively to
the diagonal matrix which contains the eigenvalues and to the
unitary matrix which contains the associated eigenvectors. The
whitening matrix is given by:

W =
√

2Λ−1/2UH (24)
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Fig. 2. Distribution of the Frobenius norm of the space time correlation
for τ ∈ Ω at SNR=0dB. Communication using Alamouti coding and QPSK
modulation. The interceptor is composed of 2 antennas and receives 2048
samples.

After the diagonalization the equation (23) shows that
each element of vecd{R̂Y,T (τ0)} follows asymptotically a
gaussian circular law with zero mean and variance 2 which
implies that the square modulus follows a chi-square law
with 2 degree of freedom χ2

2. As the gaussian elements are
also decorrelated, the n2

r chi-square laws are independent
and so the Frobenius norm of vecd{R̂Y,T (τ0)} follows
asymptotically a chi-square law with 2n2

r degree of freedom,
i.e ||vecd{R̂Y,T (τ0)}||2F −→ χ2

2n2
r
.

The knowledge of the distribution of ||vecd{R̂Y,T (τ0)}||2F
under assumption H0 permits one to set the peak detector
threshold. The peak detector threshold, ε, is obtained from
the probability of false alarm, pfa, defined by:

pfa =
∫ ∞

ε

x
(v−2)

2

2v/2Γ(v/2)
e−x/2dx (25)

where v is the degree of freedom which is equal to 2n2
r, and

Γ() is the gamma function such as:

Γ(z) =
∫ ∞

0

xz−1e−xdx

Taking the inverse function of equation (25) leads to ε. Finally,
the hypothesis H0 is chosen if ||vecd{R̂Y,T (τ)}||2F < ε. If
the norm is greater than the threshold ε, the hypothesis H1

is chosen.

Figure 2 presents the histogram of ||vecd{R̂Y,T (τ0)}||2F
for a communication using Alamouti coding. The probability
density function of the chi-2 law with 2n2

r degrees of
freedom and the threshold, ε, obtained with a probability of
false alarm equal to 10−4 are plotted on the same figure.
It is worth noting that the histogram is well approximated
by the chi-2 law. Figure 3 depicts the threshold ε and
the norm ||vecd{R̂Y,T (τ)}||2F as a function of τ for the
same communication. We can remark that the value of the
Frobenius norm is greater than ε only for τ = 1. The use of
the result of the peak detector together with the decision tree

0 50 100 150 200
0

50

100

150

200

τ

||vectd{̂RY ,T(τ )}||2F

||vectd{̂RY ,T(τ )}||2F
Threshold ε (pfa =10−4 )

Fig. 3. Threshold of the peak detector with SNR = 0dB. Communication
using Alamouti coding and QPSK modulation. The interceptor is composed
of 2 antennas and receives 2048 samples.

of the figure I allows us to conclude that Alamouti coding is
used at the transmitter side.

V. ALGORITHM SUMMARY

The proposed STBC recognition algorithm is composed of
the following steps:

1) Computation of the time-lag correlation, R̂Y,T (τ) with
equation (20) for τ = {0, · · · , N/2}.

2) Computation of the covariance matrix Ψ̂
of vec{R̂Y,T (τ0)} with equation (21) for
Ω = {8, 9, · · · , N/2}.

3) Computation of the eigenvalues decomposition of Ψ̂.
4) Computation of the whitened matrix W from equation

(24) and of vecd{R̂Y,T (τ)} with equation (22).
5) Computation of the Frobenius norm

||vecd{R̂Y,T (τ)}||2F .
6) Computation of the peak detector threshold, ε, from the

probability of false alarm with equation (25). The degree
of freedom of the chi-2 law is equal to 2n2

r.
7) Classification with the decision tree of the figure 1.

VI. SIMULATION RESULTS

Monte Carlo simulations were run to highlight the behavior
of the proposed algorithm in different environments. They
were aimed at recognizing communications using Spatial
Multiplexing, Alamouti coding or Orthogonal STBC3 with
rate 3

4 (1st and 2nd code) and 1
2 (3rd code).

One thousand of Monte Carlo trials was performed for each
type of communication. Moreover, the conditions for each
Monte Carlo trial were: i) A Rayleigh distributed channel,
which means that Huv follows a complex gaussian circular law
of unit variance, i.e. E[|Huv|2] = 1, ii) a complex gaussian
circular and spatially uncorrelated noise, verifying RB,H(0) =
σ2Inr . iii) SNR = 10log10

(σ2
s

σ2

)
where σ2

s = tr[RX,H(0)] and
tr[ ] denotes the trace function.
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Fig. 4. Effect of the number of received samples N on the probability of
correct recognition. Recognition of communications using spatial multiplexing
or Alamouti coding and QPSK modulation. The interceptor is composed of
3 antennas. The probability of false alarm is equal to 10−4.
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Fig. 5. Effect of the number of receiver antennas nr on the probability of
correct recognition. The interceptor receives 512 samples. The probability of
false alarm is equal to 10−4.

A. Influence of the number of received samples N

Figure 4 illustrates the recognition behavior for an inter-
ceptor composed of 3 antennas and a number of received
samples equals to 512, 1024, 2048 and 4096. In the four
cases, the probability of recognition is close to 1 at a SNR
equals to 10dB. The recognition is enhanced by a greater
number of received samples. With N = 4096, the probability
of correct detection is close to 1 for a SNR equals to 0dB.
This improvement is due to a better estimate of the correlation
matrix R̂Y,T (τ).

B. Influence of the number of receiver antennas nr

Figure 5 presents the probability of correct detection with
respect to the number of receiver antennas for an intercep-
tor receiving 512 samples and a probability of false alarm
equals to 10−4. It is increased by elevating the number of
receiver antennas. For 5 receiver antennas and a SNR close
to 5 dB, the probability of correct recognition is about 1.
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Fig. 6. Effect of the the probability of false alarm pfa. Recognition of 5
STBC communications using QPSK modulation. The interceptor is composed
of 3 antennas and receives 512 samples.

TABLE II
CONFUSION MATRIX. PROBABILITY OF FALSE ALARM 10−2 . THE

INTERCEPTOR IS COMPOSED OF 3 ANTENNAS AND RECEIVES 512
SAMPLES. SNR = 20dB.

������In
Out STC3(3) STC3(2) STC3(1) Alam. SM

STC3(3) 1000 0 0 0 0
STC3(2) 62 938 0 0 0
STC3(1) 57 28 915 0 0
STC2 32 15 36 917 0
SM 15 16 19 11 939

In fact, a larger number of receiver antennas enhances the
amplitude of the Frobenius norm peaks ||vecd{R̂Y,T (τ)}||2F
and the discrimination between non-null and null amplitudes
is easier. It’s interesting to note that in the underdetermined
case (nr < nt), the probability of correct detection is not equal
to 1 even for high SNR conditions. For a receiver composed
of 1 antenna, this probability is close to 0.4 at 10 dB. In fact
in the underdetermined case, the proposition 1 is not valid
since nr < nt. Increasing the probability of false alarm (pfa)
leads to better performances in this case. However with a high
false alarm, the risk of detecting a peak where there isn’t one
increases.

C. Influence of the probability of false alarm

Figure 6 depicts the performances of correct recognition
versus the probability of false alarm for an interceptor re-
ceiving 512 samples and composed of 3 antennas. A higher
probability of false alarm gives better results at low SNR since
the risk of non detection of a peak is decreased (Type II risk).
At a SNR equals to 0, the probability of detection is close
to 0.83 for pfa = 10−2 and close to 0.7 for pfa = 10−5.
However at high SNR, a lower probability of false alarm gives
better results since the risk of detecting a peak when there isn’t
one is lower (Type I risk). A low pfa leads to perfect detection
at a SNR=20dB whereas pfa = 10−2 leads to a probability
of correct detection close to 0.94 for the same SNR. Table
II gives the corresponding confusion matrix. As the confusion
matrix is lower triangular, it shows that wrong detections occur
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Fig. 7. Effect of the the modulation. Recognition of 5 STBC communications.
The interceptor is composed of 3 antennas and receives 512 samples. The
probability of false alarm is equal to 10−4.
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Fig. 8. Effect of spatially correlated noise. Recognition of 5 STBC
communications. The interceptor is composed of 3 antennas and receives
512 samples. The probability of false alarm is equal to 10−4.

when non-null values of the Frobenius norm caused by a bad
estimate of R̂Y,T (τ) are detected as peaks (Type I risk).

D. Influence of the modulation

We have evaluated the behavior of our algorithm for 4
complex modulations: QPSK, 16PSK, 32PSK, 16QAM and
32QAM. These modulations are mandatory for most of the
wireless standards. Figure 7 presents the probability of correct
detection with respect to the modulation. The figure shows
that the performances of our algorithm do not depend on the
complex modulation, the same performances are achieved for
the 5 modulations.

E. Influence of spatially correlated noise

In the previous simulations, the noise is supposed to be
spatially and temporally white, i.e the noise covariance matrix
is equal to RB,H(τ) = σ2δ(τ)Inr . In the presence of strong
spatially colored interference, a more general assumption on
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Fig. 9. Effect of the maximum doppler shift of the propagation channel.
Recognition of 5 STBC communications using QPSK modulation. The inter-
ceptor is composed of 4 antennas and receives 512 samples. The probability
of false alarm is equal to 10−4 and the sample time of the input signal is
equal to 10−5 s.

the noise term B(k) is that the noise is temporally white but
spatially colored [15]. We have evaluated the performances
of our algorithm under spatially correlated noise environment.
In our simulations, the noise consists of spatially correlated
vectors with exponentially decaying correlation among the
elements. The element located on the uth row and the vth

column of the noise covariance matrix RB,H(0), denoted by
Ξuv , is given by:

Ξuv = σ2ρ|u−v|ei(u−v)π/2 (26)

where 0 ≤ ρ < 1 is a decaying factor. This noise model
has been exposed on reference [21]. Theoretically, spatially
correlated noise does not influence the performance of our
method since we exploit the time lag correlations for τ �= 0.
Figure 8 presents the probability of correct detection versus
the factor ρ. The figure 8 shows that for a moderate decaying
factor (ρ ≤ 0.7), the presence of spatially correlated noise
improves the probability of correct detection at low SNR.
However in a high correlated noise environment (ρ ≥ 0.9),
the performances decreases.

F. Influence of fast fading channel

The previous experiments assume that the channel is static,
i.e the channel matrix H does not change over the interception.
We have evaluated the performances of our method in the
case of a fast fading Rayleigh channel with Jake’s doppler
spectrum [22]. The figure 9 shows the performances of correct
recognition versus the maximum doppler shift, fd. In each
simulation, the input sample period is fixed to 10−5 s. We can
remark that the fast fading decreases the probability of correct
recognition. For a SNR of 20dB and a maximum doppler of
50 Hz, 100 Hz and 150 Hz, the probability of correct detection
is respectively equal to 0.97, 0.95 and 0.92.

G. Influence of synchronization errors

The application of our STBC blind recognition algorithm
requires a perfect estimation of the timing synchronization
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Fig. 10. Effect of the synchronization error μ. Recognition of 5 STBC
communications using QPSK modulation. The interceptor is composed of 4
antennas and receives 512 samples. The probability of false alarm is equal to
10−4.

i.e one sample per symbol and optimum sampling time. We
have evaluated the performances of our algorithm with non-
optimum sampling time. In the case of rectangular pulse
shapes, sampling time error of μ% translates after the matched
filtering, to a two-path channel [1 − μ, μ] [5]. In our simula-
tions, the same error is used for each transmitter-receiver pair.
Figure 10 illustrates the behavior of the proposed algorithm for
μ varying from 0 (optimum sampling time) to 0.2 (20% error).
For small synchronization error (μ = 0.1), the performances
are close to the ones obtained under ideal conditions. However,
increasing the synchronization error decreases the probability
of correct recognition even for large SNR. For example, we
can remark that a synchronization error of 20% leads to a
probability equals to 0.91 at SNR = 20dB. In fact, if a peak
is present at the time lag τ , sampling time errors introduce
new correlation peaks at τ − 1 and τ + 1. So in the presence
of high synchronization errors, the decision tree of figure 1 is
not adapted for the recognition of STBC.

VII. CONCLUSION

This paper described a new method for the blind recognition
of STBC under perfect estimation of the timing synchroniza-
tion. We showed that the Frobenius norm of the space-time
correlations exhibits peaks whose positions only depend on
the space-time coding. The time lags for which the Frobenius
norm is non zero are identified with a peak detector based on
hypothesis testing, then the automatic recognition is performed
by a decision tree. The performances of our algorithm were
evaluated for the recognition of 5 space-time codes using
2 and 3 transmit antennas: Spatial Multiplexing, Alamouti
coding and 3 types of Orthogonal STBC3. Experimental
results showed a good recognition, even at low SNR and with
a limited number of receive antennas. The performances were
enhanced by increasing the number of receiver antennas and/or
that of received samples. Additional simulations showed that
this method still worked with less receivers than transmitters
(undertermined case), under spatially correlated noise environ-
ments, and with small synchronization errors.

APPENDIX

A. Proof of the first statement

Let us demonstrate that:

||RY,T (τ)||2F = 0 if and only if ||RX,T (τ)||2F = 0(27)

under the assumption that the channel matrix H of size nr×nt

(nr ≥ nt) is full rank (rank(H) = min(nr, nt) = nt). The
proof requires to demonstrate the two following implications:

||RX,T (τ)||2F = 0 ⇒ ||RY,T (τ)||2F = 0 (28)

||RY,T (τ)||2F = 0 ⇒ ||RX,T (τ)||2F = 0 (29)

1) Proof of the first implication: Using the equation 15, we
obtain the implication:

||RX,T (τ)||2F = 0 ⇒ RX,T (τ) = 0nt

⇒ HRX,T (τ)HT = 0nr

⇒ ||HRX,T (τ)HT ||2F = 0
⇒ ||RY,T (τ)||2F = 0 (30)

2) Proof of the second implication: Using the equation 15,
we obtain the implication:

||RY,T (τ)||2F = 0 ⇒ RY,T (τ) = 0nr

⇒ HRX,T (τ)HT = 0nr

⇒ HHHRX,T (τ)HT H∗ = HH0nrH
∗

⇒ (HHH)RX,T (τ)(HHH)T = 0nt(31)

For a full rank channel matrix H of size nr × nt (nr ≥ nt),
the matrix HHH is invertible [23]. Multiplying the left and
the right of the last equation by (HHH)−1 and ((HHH)−1)T

respectively leads to:

||RY,T (τ)||2F = 0 ⇒ RX,T (τ) = (HHH)−10nt((H
HH)−1)T

⇒ RX,T (τ) = 0nt

⇒ ||RX,T (τ)||2F = 0 (32)

B. Proof of the second statement

To demonstrate that:

||RY,H(τ)||2F = 0 if and only if ||RX,H(τ)||2F = 0 (33)

the proof is quite similar (use equation 16 instead of 15).

C. STBC examples

A communication using spatial Multiplexing transmit nt

symbols, denoted by the vector S, simultaneously via the nt

transmit antennas. The transmitted matrix, C(S), reduces to
the following column vector:(

C(S)
)T

=
(

s1 · · · snt

)
(34)

The Alamouti code [9] is an Orthogonal STBC of rate c = 1
using nt = 2 transmit antennas. The vth transmitted matrix,
C(S), is equal to:(

C(S)
)T

=
(

s1 s2

−s∗2 s∗1

)
(35)
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An Orthogonal STBC3 of rate 3
4 using nt = 3 transmit

antennas [7] is defined by the following transmitted matrix
C(S):

(
C(S)

)T

=

⎛⎜⎜⎝
s1 0 −s∗2
0 s1 −s3

s2 s∗3 s∗1
−s3 s∗2 0

⎞⎟⎟⎠ (36)

Another Orthogonal STBC3 of rate 3
4 using nt = 3 transmit

antennas [7] is defined by the following transmitted matrix
C(S):

(
C(S)

)T

=

⎛⎜⎜⎝
s1 s2 s3

−s∗2 s∗1 0
s∗3 0 −s∗1
0 −s∗3 s∗2

⎞⎟⎟⎠ (37)

An Orthogonal STBC3 of rate 1
2 using nt = 3 transmit

antennas was proposed by Tarokh [10]. The transmitted block,
C(S), is defined by the following matrix:

(
C(S)

)T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 s2 s3

−s2 s1 −s4

−s3 s4 s1

−s4 −s3 s2

s∗1 s∗2 s∗3
−s∗2 s∗1 −s∗4
−s∗3 s∗4 s∗1
−s∗4 −s∗3 s∗2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(38)
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