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Abstract: The blind recognition of communication parameters is an 
important research topic in both commercial and civilian systems. In this 

paper, we investigate the blind recognition of the modulation. Currently 

most part of the existing algorithms assumes that the transmitter uses a 

single-antenna. This study extends the problem for multiple-antennas 

(MIMO) systems. We adopt a Maximum Likelihood approach for the 

blind recognition of the modulation and we consider two different 

situations. First, we assume the channel knowledge at the receiver side 

and we expose the optimal solution which is called Average Likelihood 

Ratio Test (ALRT). Then, we relax this assumption and we propose a 

second method based on a Hybrid Likelihood Ratio Test (HLRT). 

Keywords: MIMO, Spatial Multiplexing, Modulation Recognition, 

Electronic Warfare, Cognitive-Radio.  

1. Introduction 

With the integration of Internet and multimedia applications in next 

generation wireless communications, the demand for wide-band high data rate 

and robust communication services is growing. To meet these requirements, one 
of the most promising technologies relies on the use of multiple-antennas at both 

the transmitter and receiver side [1]. These systems, called MIMO, can be 

divided into two categories. On the one hand, MIMO communications with 
Spatial Multiplexing (SM) achieve high data rates by transmitting independent 

and separately encoded data signals from each of the multiple transmit antennas. 

On the other hand, MIMO with Space-Time Coding (STC) improves the 
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robustness of the communication by transmitting space-time redundancy [2]. 

Due to their high performances, MIMO-SM and MIMO-STC systems would 
play a key role for the development of the next generation wireless 

communications.  

In a non-cooperative context, the blind recognition of MIMO 

communications parameters is a new challenging problem. Before decoding the 

received signals, the receiver needs to blindly estimate the number of transmitter 

antennas, the space-time coding, the channel and the modulation. Different 

approaches have been exposed in literature for the blind estimation of the 

number of transmitter antennas; a review is exposed in reference [3]. 

Furthermore algorithms devoted to the recognition of the Space-Time coding  

[4, 5, 6] and the estimation of the channel matrix [7, 8, 9, 10] are also available. 

Concerning the blind recognition of the modulation, several approaches have 

been proposed for Single-Input Single-Output communications (SISO) systems 

[11, 12] but they are not suitable for MIMO systems. 

In this study, we propose a solution for the blind recognition of the 

modulation in MIMO-SM systems. Section 2 presents the signal model and the 

assumptions. In Section 3, we develop the optimal solution under the ideal case 

i.e., when the channel is known at the receiver side. Then, in Section 4, we adapt 

this solution for the non-ideal case i.e., when the channel knowledge is unknown. 

Finally, the performances of two proposed methods are compared in Section 5. 

2. Signal Model and Assumptions 

Let us consider a MIMO-SM transmitter using nt antennas and a receiver 

composed of nr antennas. Under the assumption that the channel is  

frequency-flat and time-invariant, the k
th

 received samples, denoted 

! " ! " ! " T

1 nrY k y k y k# $ %& ' , can be expressed as:  

 ! " ! " ! "Y k S k B k# (H , (1) 

where: 

– the column vector ! " ! " ! " T

1 nrB k b k b k# $ %& ' of size nr corresponds 

to the noise samples. This random vector is assumed to be a spatially-

white circular Gaussian random with zero mean and variance 2)  i.e.,  

! " ! "20, nrB k N ) I! , where nrI  denotes the identity matrix of size nr; 

– the elements of the nr nt*  matrix H correspond to the complex 

channel gain between the transmit and receive antennas. We assume 

that the number of receivers is greater than the number of transmitter 

i.e., nr nt+ ; 
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– the column vector ! " ! " ! " T

1 ntS k s k s k# $ %& ' of size nt corresponds 

to the k
th

 transmitted symbols. These symbols are assumed 

independent and identically distributed. Furthermore, without loss of 
generality, we consider that the energy of the transmitted symbols is 

normalized i.e., ! " 2
1uE s k, - #, -& '

 and that the gain factor is contained 

into the channel coefficients. 

The goal of this paper is to blindly recognize the modulation format of the 

transmitted signals, denoted  , from N received samples ! " ! "1 , ,Y Y N# $ %& 'Y  . 

We restrict our study to the general class of linear and memoryless modulations; 

these modulations are described in the reference [13]. Furthermore, we assume 

that the number of transmitters and the noise variance are known at the receiver 
side. In a non-cooperative context, several approaches have been proposed in 

literature to estimate nt  and 2)  from the covariance matrix of the received 

samples ! " ! "HE Y k Y k$ %
& ' ; a review of these methods is available in reference [3]. 

3. Modulation Recognition with Channel Knowledge  

Within the Likelihood-based framework, the modulation recognition is 

formulated as a multiple composite hypothesis-testing problem. Let us denote by 

. /,0 1Y H  the Likelihood Function (LF) of the modulation  . The selected 

modulation, denoted 1̂ , is the one which maximizes the Likelihood Function, i.e.: 

 . /! "ˆ arg max ,
u

u
1 23

1 # 0 1Y H , (2) 

where 4 51, , p3 # 1 1  denotes the set of all possible modulations. The 

Likelihood Function depends on two random parameters: the transmitted 

symbols and the Gaussian noise. To take into account these random parameters, 
the optimal solution in the Bayesian sense is the Average Likelihood Ratio test 

(ALRT) [12], which is defined by: 

 . / . / . /, , , du u u

S

S P S0 1 # 0 1 16Y H Y H S , (3) 

where the matrix ! " ! "1 , ,S S N# $ %& 'S   of size nt N*  denotes the unknown 

transmitted symbols and where . /uP 1S  corresponds to the probability of S 

given the modulation u1 . Using the fact that the transmitted symbols are 

independent and identically distributed, Equation (3) can be expressed as: 

 . / ! " ! " ! "
! "1

, , , d

N

u u u

k S k

Y k S k P S k S

#

0 1 # 0 1 1$ % $ %& ' & '7 6Y H H , (4) 
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where the vector ! "S k , of size nt , denotes the unknown transmitted symbols at 

sampling time k, and where ! " uP S k 1$ %& '  corresponds to the probability of ! "S k  

given u1 . Let us denote by uM  the number of states of the constellation u1 . As 

the transmitted symbols are independent and identically distributed, the probability 

! " uP S k 1$ %& '  is equal to ! "! "1
nt

uM . Using this result in Equation (4) leads to: 

 . /
! "

! " ! "
! "1

1
, ,

nt
u

N

u N nt
ku S k

Y k S k
M

8
# 21

0 1 # 0$ %& '97Y H H . (5) 

The Likelihood Function ! " ! ",Y k S k0$ %& 'H  is equal to the probability 

density function of ! "Y k  given the transmitted symbol ! "S k , the channel 

matrix H  and the noise variance 2) . From Equation (1), we obtain: 

 ! " ! "
! "

! " ! " 2

2
2

1 1
, exp

nr F
Y k S k Y k S k

$ %0 # : :$ %& ' , -)& ';)
H H , (6) 

where 
2

F
8 corresponds to the Frobenius norm. Finally, using Equation (6) in (5) 

leads to:  

 . /
! " ! "

! " ! "
! "

2

2
2

1

1 1
, exp

nt
u

N

u nr FN nt
k S ku

Y k S k

M
8

# 21

$ %0 1 # : :, -)& ';)
97Y H H . (7) 

The optimal solution to the modulation recognition problem is to 

maximise Equation (7) with respect to u1 , which is equivalent to maximise the 

log-Likelihood Function: 

 

. /! " ! " ! "
! " ! "

! "

2

2

2
1

log , log log

log exp .
nt
u

u u

N
F

k S k

N nt M nr

Y k S k

# 21

0 1 # : 8 : ;) (

< =$ %:> ?, -( :
> ?, -)> ?& '@ A

9 9

Y H

H  (8) 

Let us focus on Equation (8). One can note that the Likelihood Function is 

composed of several sums over the set ! "nt

u1 . As this set is composed of 

! "nt

uM  elements, the computation of the LF can be difficult when the number of 

states, uM , or the number of transmitters, nt , is large. Furthermore, the 

computation of the log-Likelihood Function requires the knowledge of the 
channel matrix. This information is usually unknown in a non-cooperative 

environment. To overcome this second problem, we propose a sub-optimal 

approach in the next section. 
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4. Modulation Recognition without Channel Knowledge 

In a non-cooperative context, the channel matrix is unknown at the 

receiver side. A logical solution to approximate the log-Likelihood Function 

. /,u0 1Y H  is to estimate H, under the assumption that the transmitted symbols 

belong to the constellation u1 , and to use this estimate in the ALRT function. 

This approach is called Hybrid Likelihood Ratio Test (HLRT). Our proposed 

HLRT algorithm is described in Figure 1. 

 
Figure 1. Approximation of the Likelihood Function . /,u0 1Y H

First, an initial channel estimate is obtained with an Independent 

Component Analysis [14]. Then, we use the modulation assumption to apply a 

phase correction algorithm. Finally, the channel estimate is used in Equation (8) 

to compute the log-Likelihood Function of each modulation. The first step of the 

algorithm does not depend on the modulation assumption while the 2
nd

 and 3
rd

 

steps depend on it. The following subsections detail each step. 

4.1 ICA algorithm 

The Independent Component Analysis (ICA) is a computational method 

for separating a multivariate signal into additive components supposing the 

mutual statistical independence of the non-Gaussian source signals. A review of 

ICA algorithms is exposed in reference [14]. By setting the number of 

independent components equals to the number of transmitter antennas nt with 

nt nrB , an ICA algorithm permits us to estimate the channel matrix up to a 

permutation and a phase ambiguity. In our study, we use the JADE algorithm 

which is based on the Joint Approximate Diagonalisation of Eigen-matrices 

[15]. Let us denote by Ĥ  the mixing matrix estimated with JADE. Assuming a 

perfect separation, the channel can be expressed as: 

 ˆ#H HDP , (9) 

where P is the permutation factor and D is a diagonal matrix which contains the 

phase ambiguities, i.e.: 

 

1j

j

e 0

0 e

t

nt

C

C

< =
> ?

# > ?
> ?
@ A

D

 

" # "

 

. (10) 

ICA 
(JADE) 

Phase 

correction 

Likelihood 

Function 

Ĥ  . /HY ,u10  Y
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Theorem 1: When the transmitted symbols belong to the same constellation, the 

permutation factor does not modify the value of the log-Likelihood Function, i.e.: 

 . /! " ! "ˆlog , log ,u u
$ %0 1 # 0 1& 'Y H Y HD . (11)

Proof: The log-Likelihood Function is given by Equation (8) with ˆ#H HDP .

Let us focus on the terms:  

 ! " ! "
! "

2

2

1 ˆexp
nt
u

F
S k

Y k S k

21

$ %: :, -)& '
9 HDP . (12)

As the transmitted symbols in each antenna belong to the same modulation, 

! "S k  and ! "S kP  belong to same set nt
u1 . So the sum can be directly computed 

by setting P  equals to ntI . This operation only permutes the element of the sum 

and, as the sum is commutative, it does not change the final result.  

Theorem 1 states that the permutation matrix does not change the value of 

the Likelihood Function. Nevertheless, the unknown phase matrix D affects the 

LF function. We propose to estimate this phase matrix in Subsection 4.2.

4.2 Phase correction algorithm 

In the second stage, we exploit the modulation assumption to correct the 

phase ambiguities. Under the assumption that the symbols belong to the 

modulation u1 , the unknown phase factor can be estimated by using the 

constellations property of u1 . First, let us consider the separated components, 

! " ! " ! "
T

1 nt

s s sY k y k y k$ %# & ' , given by: 

 ! " ! "1ˆsY k Y k:# H , (13) 

 ! " ! " ! "1ˆsY k S k B k:# (DP H . (14) 

Using Equations (11) and (13), each separated component can be 

expressed in a vector form as: 

 ! " ! " ! "j
e u

u
S

v uy k s k b k
C# ( , (15) 

where the index v depends on the permutation factor and where ! "ub k  is an 

additive Gaussian noise. We propose to estimate the unknown phase factor, 
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j
e uC , with the Q power-law estimator [16]. For a 2!/Q-rotationally symmetric 

constellation, this estimator is given by: 

 ! " ! "! "
4

*

0

1ˆ
N

q
q S

u u

k

k E s y k
q

:

#

< =
$ %C # D> ?& '> ?

@ A
9 . (16) 

The order q and *qE s$ %
& '  depend on constellation assumption. For 

normalized M-PAM, the constellation is !-rotationally symmetric so 2q #  and 

*2 1E s$ % #& '  since the energy of the transmitted symbols are normalized. For  

M-PSK, q M#  and * 1qE s$ % #& ' . For rectangular M-QAM, 4q #  and *qE s$ %
& '  

depends on the number of states M. To illustrate this second stage, let us 

consider a MIMO-SM system using 2nt # , 2nr #  antennas and a QPSK 

modulation. Figure 2a and Figure 2b show the constellation of the two received 

signals, ! "1y k  and ! "2y k . Figure 2c and Figure 2d display the constellation of 

the separated components after ICA. Compared to QPSK constellation, the 

constellations of the separated components are phase-rotated. In Figure 2e and 

Figure 2f, we can remark that the phase correction algorithm adapts the 

constellation of the separated components, ! "1
ˆj

1e
Sy k

: C
 and ! "2

ˆj
2e
Sy k

: C
, to the 

QPSK one.  

Because of the constellation properties, the second stage is able to recover 

the phase up to an unknown factor 
2 j

e u q: ;E
, where uE  is an integer. Taking into 

account this indetermination, the channel matrix can be expressed as: 

 ˆ ˆ
q#H HDD P , (17) 

with: 

 

1
ˆj

j

e 0

ˆ

0 e nt

C

C

< =
> ?

# > ?
> ?> ?
@ A

D

$

 

" # "

 

, (18) 

 

12 j

2 j

e 0

0 e nt

q

q

q

;E

;E

< =
> ?

# > ?
> ?
@ A

D

 

" # "

 

. (19) 
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f) Second separated 

component after phase 
correction 

Figure 2. Constellation of the received samples separated component for a MIMO 

communication using nt = nr = 2 antennas and a QPSK modulation  

(SNR = 20 dB, N = 512 samples)

Theorem 2: Under the assumption that the transmitted symbols belong to 

constellation u , the matrix qD P , where qD is defined in Equation (19) and P

is a permutation matrix, does not modify the Likelihood Function, i.e.: 

 ! "# $ # $ˆ ˆlog , log ,u u
% &'  ( '  ) *Y H Y HD . (20) 

Proof: First from Theorem 1, we obtain 

! "# $ # $ˆ ˆlog , log ,u u q
% &'  ( '  ) *Y H Y HDD . 

Then, let us focus on the terms:  

 # $ # $
# $

2

2

1 ˆ ˆexp
nt
u

q
F

S k

Y k S k

+ 

, -. .% &/) *
0 HDD . (21) 
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Under the assumption that the symbols belong to u , which is 2 /Q-rotationally 

symmetric, # $S k  and # $qS kD  belong to the same set nt
u . Setting q nt(D I  

permutes the elements of nt
u  and does not change the sum result. 

 

Finally, the Likelihood Function can be approximated by 

# $ˆ ˆlog ,u
% &'  ) *Y HD . Algorithm 1 sums up the proposed method. 

Algorithm 1. Blind recognition of the modulation with unknown channel matrix 

5. Simulation Results 

In this section, we present the performances of the two proposed 
approaches for the recognition of the 4 modulation formats: BPSK, QPSK, 
16PSK and 16QAM. 500 Monte Carlo trials were performed for each 
modulation format to approximate the probability of detection. Moreover, the 
conditions for each trial were: i) a MIMO system composed of 2nt (  and 

4nr (  antennas; ii) a Rayleigh distributed channel, which means that each 
element of H follows a complex Gaussian circular law with zero mean and unit 
variance; iii) 512 i.i.d. transmitted symbols on each antenna; iv) a spatially white 

Gaussian noise of variance 2/ ; v) a signal to noise ratio (SNR) equals to 

# $210lg nt / , and vi) a perfect knowledge of the number of transmitters and of 

the noise variance at the receiver side. 
In Subsections 5.1, we present the performances of our proposed 

algorithms with and without channel knowledge at the receiver side.  

• .12'maxlog  

• compute Ĥ  with JADE algorithm 

for 3+ u

    • compute the components # $ # $ # $
T

1 ntnt

s s sY k y k y k, -( ) *  with Equation (13)

• estimate the phase # $u k4  for each separated components with Equation (15)

    • construct the matrix D̂  with Equation (17)

    • compute the log-LF # $ˆ ˆlog ,u
% &'  ) *Y HD  with Equation (8)

if # $ max
ˆ ˆlog , logu

% &'  5 ') *H HD  

• # $max
ˆ ˆlog log ,u

% &' 2 '  ) *Y HD  

  • u 2 ̂

endif 

endfor 
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5.1 Performances with channel knowledge 

Figure 3 presents the performances of the first classifier with channel 
knowledge at the receiver side. This classifier is optimal in the Bayesian sense 
and, so provides an upper bound of classification. 

Figure 3a displays the probability of detection of each modulation format 
when the transmitted symbols belong to a BPSK modulation, i.e.,

ˆ BPSKP , -  () * . We remark that the BPSK modulation is perfectly detected 

for a SNR equals to –10 dB. 
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d) 32QAM symbols transmitted

Figure 3. Performances with known channel matrix; MIMO communication 

using nt = 2 and nr = 4 antennas; 512 received samples per antenna 

Figure 3b exposes the performances when the transmitter uses a QPSK 
modulation. The modulation is correctly detected for a SNR equals to 0 dB. At 
low SNR, we remark ambiguities between QPSK, 16PSK and 16QAM 
modulations. At SNR = –5 dB, the main false detection occurs when a 16PSK 
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constellation is recognized instead of the QPSK one. In Figure 3c, the same 
simulation is performed with 16PSK modulation. For SNR < 0, we observe 
confusions between QPSK, 16QAM and 16PSK modulations. A perfect 
detection is achieved for SNR = 0 dB. Finally, Figure 3d exposes the probability 
of detection when the transmitted symbols belong to a 16QAM modulation. We 
note that the modulation is correctly detected at a SNR of 2 dB. 

5.2 Performances without channel knowledge  

Figure 4 presents the performances obtained with the Algorithm 1. This 
sub-optimal method does not require the channel knowledge at the receiver side. 
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Figure 4. Performances with unknown channel matrix; MIMO communication  

using nt = 2 and nr = 4 antennas; 512 received samples per antenna 

Figure 4a displays the probability of recognition of each modulation 
format when the transmitted symbols belong to a BPSK modulation. While a 
perfect detection is obtained at a SNR = –10 dB with the optimal classifier, the 
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probability of BPSK detection is close to 1 at SNR = 1 dB. Figure 4a shows that 
most of the confusions occur when a QPSK or a 16QAM format is detected 
instead of a BPSK one. Figure 4b shows the performances for QPSK 
modulations. This modulation is correctly detected at a SNR equals to 5 dB. 
There is a difference of 5 dB compared to the optimal performances. The most 
important confusions occur when the algorithm selects 16QAM constellation 
instead of the QPSK one. Figure 4c presents the probability of detection when 
the symbols belong to a 16PSK constellation. At low SNR, we remark 
confusions between QPSK, 16PSK and 16QAM modulations. Our proposed 
classifier recognizes the QPSK modulation from –5 dB. The probability of 
correct detection is close to 1 at a SNR equals to 5 dB (0 dB for the optimal 
classifier). Finally, Figure 4d displays the performances for 16QAM 
modulation. We remark that the performances are close to the optimal ones for 
high SNR: a perfect detection is achieved at SNR = 2 dB. However at low SNR, 
the classifier fails to discriminate QPSK and 16QAM constellation. 

6. Conclusion 

This paper investigated the problem of the blind recognition of the 
modulation for MIMO systems using Spatial Multiplexing. Two Likelihood-
based classifiers were proposed. The first one, called ALRT, is optimal in the 
Bayesian sense but requires the knowledge of the channel matrix. The second 
classifier, called HLRT, approximates the ALRT by replacing the channel 
matrix with its estimate. The channel is estimated in two steps by using an 
Independent Component Analysis and a phase Correction algorithm 
respectively. The performances of the two methods were evaluated for MIMO 
communications using 2 transmitter and 4 receiver antennas. The simulations 
showed that the two classifiers perform well and, for example, perfectly 
recognize BPSK, QPSK, 16PSK and 16QAM modulations at a SNR equals to 
5 dB.  

Future works will be devoted to the blind recognition of the modulation 
for MIMO systems using Space-Time Coding.  
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