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I. INTRODUCTION

T HE multiple-input multiple-output (MIMO) systems used in a rich scattering environment for wireless communications improve significantly the reliability or the data rate of transmissions in comparison with single-input single-output (SISO) systems [START_REF] Foschini | Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas[END_REF], [START_REF] Telatar | Capacity of multi-antenna Gaussian channels[END_REF]. MIMO techniques are adopted in wireless standards, such as 802.11n, for high data rate services. Various transmission strategies are adopted to improve the link reliability or/and spectral efficiency of very high data rate communication for wireless transmissions. The MIMO techniques can be classified into two categories often referred to as open-loop and closed-loop MIMO systems.

Open-loop systems do not require any channel state information (CSI) at the transmitter side. The link reliability is improved thanks to transmit diversity which is generally ensured by space-time techniques [START_REF] Alamouti | A simple diversity technique for wireless communications[END_REF], [START_REF] Tarokh | Space-time codes for hight data rate wireless communication: Performance criterion and code construction[END_REF], [START_REF] Tarokh | Space-time codes from orthogonal designs[END_REF]. The most well known open-loop technique is the Alamouti Orthogonal Space-Time Bloc Code (OSTBC) for two transmit antenna with
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Alternatively, closed loop transmit diversity is used in wireless MIMO systems, wherein each antenna can transmit an independent datastream into the wireless channels whereby the overall transmission rate is increased. Closed-loop MIMO methods allow to greatly improve the performance of MIMO communications if full channel knowledge is known at the transmitter (Tx-CSI). The Tx-CSI can be achieved by the transmitter with two methods: if the channel is slowly fading, the receiver estimates the channel and these data are fed back through a feedback link (typically in a Frequency Division Duplexing (FDD) mode), or the channel is considered as reciprocal, and the transmitter estimates the channel matrix thanks to a pilot signal issued from the receiver in a Time Division Duplexing (TDD) mode. In wireless MIMO orthogonal frequency division multiplexing (OFDM) standards, such as Wi-Fi (802.11n) or Wi-Max (802.16e), the singularvalues decomposition (SVD) type of beamforming technique is proposed. Using SVD, a MIMO channel can be decomposed into several independent subchannels for data transmission for each subcarrier [START_REF] Palomar | Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization[END_REF].

The use of full Tx-CSI allows to design linear precoder and decoder by optimizing pertinent criteria such as, for example, maximizing the received signal-to-noise ratio [START_REF] Lo | Maximum ratio transmission[END_REF], [START_REF] Stoica | Maximum-SNR spatial-temporal formatting designs for MIMO channels[END_REF] (also referred to as single beamforming solution for one transmit symbol or multiple beamforming for more than one independent transmit symbol), minimizing the mean square error (MMSE) [START_REF] Sampath | Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion[END_REF], [START_REF] Scaglione | Optimal designs for space-time linear precoders and decoders[END_REF], maximizing the capacity (Water-Filling solution). These solutions decouple the MIMO channel into independent and parallel datastreams. They are all based on SVD techniques by performing a power allocation strategy into the MIMO eigen-subchannels. The optimized precoding matrix is diagonal in the eigen-channel representation and belongs to an important subset of linear precoders named diagonal precoders. In addition, a suboptimal MBER solution (minimum bit-error-rate (BER): average BER over the substreams) can be derived directly from the diagonalized channel [START_REF] Rostaing | Minimum BER diagonal precoder for MIMO digital transmissions[END_REF].

On the other hand, a unified framework is proposed in [START_REF] Palomar | Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization[END_REF], [START_REF] Palomar | MIMO Transceiver Design via Majorization Theory[END_REF] to design joint transmit-receive matrices based on the minimization of some arbitrary objective functions of the MSEs of all channel substreams. The authors in [START_REF] Palomar | Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization[END_REF] obtain that for Schur-concave functions the channel matrix is fully diagonalized and for Schur-convex functions the channel matrix is diagonalized up to a specific rotation matrix, which IEEE Journal of Selected Topics in Signal Processing (IEEE JSTSP) Special issue on "MIMO-Optimized Transmission Systems for Delivering Data and Rich Content" pp 135 -146, Vol 2, No 2, April 2008 leads to a non diagonal structure. An interesting result is that the solutions which depend directly on the BER like, for example, the minimization of the maximum BER of the substreams, the maximization of the minimum SNR of the substreams (performance in term of BER is dominated by the substream with lowest SNR) or the minimization of the average BER over the substreams, are derived from optimizing Schur-convex functions of the MSE of all channel substreams. Thus, the resulting solutions have the non-diagonal structure: the power allocation into the MIMO eigen-subchannels is still performed but beforehand, a channel-independent specific rotation matrix mixes the transmit symbols [START_REF] Palomar | Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization[END_REF].

An alternative solution leading to a non-diagonal structure is given in [START_REF] Collin | Optimal minimum distance-based precoder for MIMO spatial multiplexing systems[END_REF] by maximizing the minimum distance (max-d min ) of the symbols at the receiver side. According to performance (BER enhancement) [START_REF] Vrigneau | Statistical comparison between max-d min , max-SNR and MMSE precoders[END_REF], [START_REF] Vrigneau | max-d min precoder performances in a polarity diversity MIMO channel[END_REF], this max-d min precoder is a promising solution compared to diagonal precoders. Unfortunately, the max-d min result is available for two independent transmit symbols along with Binary Phase Shift Keying (BPSK) and 4-QAM (Quadrature Amplitude Modulation). The restriction to BPSK and 4-QAM results from the difficulty of the d min optimization and the general problem is still open [12, p.512]. Indeed, the exact expression of the minimum distance, which depends on the channel matrix, the modulation and the number of datastreams, is kept in the calculus.

This paper proposes a heuristic solution of this difficult optimization based on the max-d min solution. The solution reveals two sources of suboptimality: i) the structure is based on 2x2 subsystems and ii) the modulation is limited to 4-QAM. However, this new linear precoder increases the number of transmit symbols and offers a compromise between the exact optimization of d min and the complexity, which is exponentially related to the number of datastreams. On the other hand, a trade-off between the diversity order and the data rate has been evidenced [START_REF] Zheng | Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels[END_REF]. Thus, for a given number of antennas, any increase of the number of transmit symbols lowers the diversity order [START_REF] Ordonez | High-SNR analytical performance of spatial multiplexing MIMO systems with CSI[END_REF]. However, the precoder proposed here achieves a higher diversity order than diagonal precoders for the same number of transmit symbols. This characteristic permits a significant improvement of the transmission BER with the same transmit power. In order to compare the BER performance with the beamforming proposed by the 802.11n standard, this extended max-d min precoder is applied to MIMO-OFDM system. This paper is structured as follows: in section II, the system model is described with the matrix notation and the eigenmode representation. The max-d min solution for two transmit symbols is presented in Section III. Section IV is devoted to the new precoder, which extends the max-d min to an even number of symbols; an application of this solution to MIMO-OFDM systems is also proposed. Section V deals with the diversity order and compares it to diagonal precoders. In Section VI, the performances of max-d min extension are highlighted through BER simulations in different case-studies. Our conclusions are drawn in Section VII.

II. CHANNEL MODEL AND EIGENMODE REPRESENTATION

Let us consider a MIMO system with n T transmit and n R receive antennas, i.e. a (n T , n R ) MIMO system, and assume a quasi-static flat-fading channel model, the received signal is therefore:

y = GHFs + Gn (1)
where y is the b × 1 received symbol vector, H is the n R × n T channel matrix, F is the n T × b linear precoder matrix, G is the b × n R linear decoder matrix, s is the b × 1 transmitted symbol vector, and n is the zero-mean n R × 1 additive noise vector. Let us assume that b ≤ rank(H) ≤ min(n T , n R ) and 1

E[ss * ] = I b , E[sn * ] = 0 and E[nn * ] = R (2) 
with R the noise covariance matrix.

In addition, the average transmit power is limited to E T :

F 2 F = E T . (3) 
It is further assume that the transmitter and the receiver have perfect CSI. The main objective in this section is to obtain a diagonalized channel matrix and a whitened noise respectively called the virtual channel and the virtual noise: this operation is denoted virtual transformation [START_REF] Collin | Optimal minimum distance-based precoder for MIMO spatial multiplexing systems[END_REF]. By using the following decompositions 1) can be re-expressed as:

F = F v F d and G = G d G v , the input-output relation (
y = G d H v F d s + G d n v (4) 
where

H v = G v HF v is the eigen-channel matrix, n v = G v n
is the transformed additive noise vector with the covariance matrix R nv = E[n v n * v ] = I b , the unitary matrices G v and F v are chosen so as to whiten the noise, diagonalize the channel and reduce dimension to b. This procedure based on the singularvalue decomposition (SVD) of H is frequently used for MIMO systems, and the eigen-channel matrix is diagonal and denoted as:

H v = diag(σ 1 , σ 2 , . . . , σ b ). (5) 
The power constraint (3) is equivalent to:

F d 2 F = E T . (6) 
Some precoders are defined by a diagonal matrix F d = diag(f 1 , f 2 , . . . , f b ) and belong to the diagonal precoder group (see Fig. 1). There are solutions of criteria optimizations such as maximizing the channel capacity [START_REF] Telatar | Capacity of multi-antenna Gaussian channels[END_REF], minimizing the mean square error (MMSE) [START_REF] Sampath | Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion[END_REF], [START_REF] Scaglione | Optimal designs for space-time linear precoders and decoders[END_REF], minimizing the BER (MBER) [START_REF] Rostaing | Minimum BER diagonal precoder for MIMO digital transmissions[END_REF], maximizing the post-processing SNR [START_REF] Lo | Maximum ratio transmission[END_REF], [START_REF] Stoica | Maximum-SNR spatial-temporal formatting designs for MIMO channels[END_REF] (also often referred to as the single beamforming for one transmit symbol or the multiple beamforming by sending more than one symbol simultaneously [START_REF] Sengul | Diversity analysis of single and multiple beamforming[END_REF]), or maximizing the minimum eigenvalue of the SNR-like matrix SN R(F D ) = (H v F d ) 2 [START_REF] Scaglione | Optimal designs for space-time linear precoders and decoders[END_REF] (this precoder is equivalent to the Equal Error or EE that achieves the same BER on each datastream [START_REF] Sampath | Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion[END_REF]). These 1 E[.] denotes the expectation operator, (.) * the transpose conjugate, In the (n × n) identity matrix, Nc(0, 1) the complex-normal zero-mean and unit-variance distribution, x the Euclidean vector norm of the vector x, trace(AA * ) = A 2 F the square of the Frobenius norm of the matrix A, C the constellation alphabet and M = card(C) the constellation size, and diag(.) the diagonal matrix. solution decouple the MIMO channel into b parallel independent datastreams as shown by the block diagram in Fig. 1. The MIMO system is equivalent to parallel SISO transmissions, and the ML decisions are simplified with only b×M distances to be compared. Consequently, the diagonal precoders (i.e. F d is a diagonal matrix) have a low ML complexity, but do not use transmit diversity in the eigen-subchannels and do not achieve the maximum diversity order [START_REF] Ordonez | High-SNR analytical performance of spatial multiplexing MIMO systems with CSI[END_REF]. However, the particular case of the single beamforming solution or max-SNR corresponding to the case b = 1 achieves the maximum diversity order [START_REF] Paulraj | Introduction to space-time wireless communications[END_REF].

In the next section, we point out the key results of a non-diagonal precoder proposed in [START_REF] Collin | Optimal minimum distance-based precoder for MIMO spatial multiplexing systems[END_REF] by optimizing the minimum distance for two datastreams (b = 2) which will be necessary for the extention to an arbitrary even number of datastreams (b ≥ 4).

III. TWO-DIMENSIONAL

OPTIMIZED d min PRECODER: 2D-max-d min SOLUTION
The minimum Euclidean distance between signal points at the receiver side affects the system performances, especially with the ML detector [START_REF] Zhu | Performance analysis of maximum likelihood detection in a MIMO antenna system[END_REF]. From this well-known report, the authors in [START_REF] Collin | Optimal minimum distance-based precoder for MIMO spatial multiplexing systems[END_REF] designed a new precoder based on the maximization of the minimum Euclidean distance. The minimum Euclidean distance d min is defined by:

d min (F d ) = min (s k ,s l )∈C b ,s k =s l H v F d (s k -s l ) (7) 
where s k and s l are two symbols vectors whose entries are elements of C. Then, the max-d min precoder is the solution of:

F d min d = arg max F d d min (F d ) (8) 
under the power constraint F d

2

F = E T . The comparison of the equivalent virtual scheme for a diagonal precoder (Fig. 1) and for a non-diagonal max-d min one (Fig. 2) shows that the main difference is the ML complexity:

M b distances against b × M .
The solution of ( 8) is difficult because the exact expression of d min is considered and depends on both the constellation size and the eigen-subchannels. A very exploitable solution of (8) was given in [START_REF] Collin | Optimal minimum distance-based precoder for MIMO spatial multiplexing systems[END_REF] for two independent datastreams, b = 2 and a 4-QAM. In this case, the 2-dimensional eigen-channel matrix H v = diag(σ 1 , σ 2 ) is rewritten for simplification purpose as:

σ 1 = ρ cos γ σ 2 = ρ sin γ ⇔ γ = arctan σ2 σ1 ρ = σ 2 1 + σ 2 2 ( 9 
)
where ρ is a positive real parameter related to the eigenchannel gain, and γ is an angle linked to the singularvalues ratio and meeting σ 1 ≥ σ 2 > 0, i.e. π/4 ≥ γ > 0. It is worth noting that H v is totally defined by ρ and γ. Moreover, a small γ means that the first eigen-subchannel is privileged (σ 1 ≫ σ 2 ), whereas a value close to π/4 indicates two close eigen-subchannels (σ 1 ≃ σ 2 ). Then, the solution given in [START_REF] Collin | Optimal minimum distance-based precoder for MIMO spatial multiplexing systems[END_REF] IEEE is SNR-independent and simply depends on the value of γ:

-if 0 ≤ γ ≤ γ 0 , F d min d = F r1 = E T 3+ √ 3 6 3- √ 3 6 e i π 12 0 0 (10) -if γ 0 ≤ γ ≤ π/4, F d min d = F octa = E T 2 cos ψ 0 0 sin ψ 1 e i π 4 -1 e i π 4 (11) 
where

   ψ = arctan √ 2-1 cos γ γ 0 = arctan 3 √ 3-2 √ 6+2 √ 2-3 3 √ 3-2 √ 6+1 ≃ 17.28 • . ( 12 
)
The term ψ is related to the eigenmode power allocation alike the diagonal precoders, and the constant threshold γ 0 permits the precoder to use one [START_REF] Scaglione | Optimal designs for space-time linear precoders and decoders[END_REF] or two [START_REF] Rostaing | Minimum BER diagonal precoder for MIMO digital transmissions[END_REF] eigensubchannels. The γ 0 value is computed by considering that the two precoding forms provide the same d min . Equations ( 10), ( 11) and ( 12) can be directly computed to design the 2D-max-d min precoder for a given eigen-channel matrix or a value of γ. The optimized 2D minimum distance, noted δ(ρ, γ), depends on ρ and γ and is expressed as [START_REF] Collin | Optimal minimum distance-based precoder for MIMO spatial multiplexing systems[END_REF]:

d min (F d min d ) = δ(ρ, γ) =              E T ρ 1 - 1 √ 3 cos γ if 0 < γ ≤ γ 0 √ E T ρ (4-2 √ 2) cos 2 γ sin 2 γ 1+(2-2 √ 2) cos 2 γ otherwise. (13) 
In spite of the increase in ML complexity, the 2D-max-d min precoder exploits the spatial diversity better than the diagonal precoders for two datastreams as shown in [START_REF] Vrigneau | max-d min precoder performances in a polarity diversity MIMO channel[END_REF], [START_REF] Vrigneau | Statistical comparison between max-d min , max-SNR and MMSE precoders[END_REF]. Indeed, this promising precoder achieves a significant SNR gain when n T and n R are increased but is limited for b = 2. The following section introduce an extension of the max-d min for b > 2.

IV. EXTENSION OF THE max-d min PRECODER

A. Principle: decomposition into 2D-max-d min subsystems

Let us consider an even number of data streams, b ≥ 4, for large MIMO systems (min(n T , n R ) ≥ 4). The optimization (8) for b > 2 being difficult, it leads us to propose a compromise between the d min optimization and the complexity of the solution. The main idea is to decompose the (b × b) eigenchannel matrix into (2 × 2) eigen-channel matrices, which are d min -optimized for two datastreams (see Fig. 3). Then, the extension is split into four steps:

1) A virtual transformation of H with b > 2 gives a diagonal matrix H v (5) with the b ordered singularvalues (SV).

2) The association of b/2 couples of singularvalues leads to b/2 2D-virtual systems, denoted subsystem #i, for i = 1, . . . b/2 as it is illustrated in Fig. 3. Note that, in the figure, the best singularvalues association is given and it will be shown further in the subsection IV-C.

3) The application of the optimal 2D-max-d min solution on the subsystem #i determines the matrix F di with the power constraint F di 2 F = 1, for i = 1, . . . b/2. Then, the subsystem #i gives the minimum distance:

δ i = d min ( F d min di )
given by ( 13) with E T = 1. (14) 4) At last, the power is allocated by the coefficient Υ i , to the subsystem #i, for i = 1, . . . b/2, under the power constraint i Υ 2 i = E T , in order to maximize the minimum distance:

∆ = min i Υ i δ i . ( 15 
)
This proposed scheme limits the complexity of the ML decisions: the number of distances to be compared is b/2 × M 2 . This complexity is still higher than that of the diagonal precoders (b × M ), but it is not exponential (M b for a general non-diagonal solution).

As Steps 1 and 3 are already known, the better singularvalues association (step 2) and a criterion for the power allocation (step 4) have still to be determined. However, the proposed solution of step 4 is independent from step 2, and the optimization problem can be decoupled.

B. Power allocation Υ: Equal d min precoder (E-d min )

The criterion of the power allocation is the maximization of the minimum distance ∆. Thus, Υ is the solution of:

max Υ min i Υ i δ i and b/2 k=1 Υ 2 k = E T (16) 
with

Υ = [Υ 1 , Υ 2 , . . . , Υ b/2 ].
The optimized solution of the power allocation, Υ, consists in equalizing the distances (i.e. d min = Υ i δ i for all i). Thus, by using the power constraint [START_REF] Zheng | Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels[END_REF], we obtain

E T = b/2 k=1 d min 2 δ 2 k = Υ 2 i δ 2 i b/2 k=1 1 δ 2 k
and the the power allocation is then given by

Υ 2 i = E T   δ 2 i b 2 k=1 1 δ 2 k   -1 for i = 1, . . . , b 2 . ( 17 
)
This precoder is then denoted Equal d min or E-d min . The power constraint can be verified:

F d 2 F = b 2 i=1 Υ 2 i F di 2 F = b 2 i=1 Υ 2 i = E T . (18) 
By using [START_REF] Ordonez | High-SNR analytical performance of spatial multiplexing MIMO systems with CSI[END_REF], the optimized minimum distance d min is:

d 2 min = Υ 2 i δ 2 i = E T   b 2 k=1 1 δ 2 i   -1 . ( 19 
)
The minimum distance depends on the inverse of the square minimum distance of each subsystem. Remark: Despite the difference between optimized criteria, the solution proposed here is analog to the max(λ min ) or the EE (Equal-Error) diagonal precoders. Indeed, the EE solution is given by:

f 2 i = E T σ 2 i b k=1 1 σ 2 k -1 . (20) 
By analogy, [START_REF] Zhu | Performance analysis of maximum likelihood detection in a MIMO antenna system[END_REF]. In conclusion, the power allocation is analog to the diagonal precoder and all of the solutions available in the literature can be applied. For example, in Section VI we will employ the QoS solution and show an enhancement of the BER compared with the diagonal precoder.

σ 2 i becomes δ 2 i , f 2 i becomes Υ 2 i in
The general solution for the power allocation is given for any value of δ i , but there is another degree of liberty (step 2) with the combination of the couples.

C. Optimal association of eigen-subchannels

The issue dealt in this paragraph is: which optimal combination of couples of singular values maximizes the global minimum distance ( 19)? The optimization is mathematically expressed as: max

M d min (21) 
where M represents all the combinations of couples of sin- [START_REF] Paulraj | Introduction to space-time wireless communications[END_REF] can be straightforward lower bounded as:

gularvalues with card(M) = ( b 2 )( b-2 2 )...( 2 2 ) b/2! = b 2 i=1 (b -2i + 1). n k = n! k!n-k! is the binomial coefficient. The d min criterion in
d min ≥ E T 2 b min l δ l . ( 22 
)
Maximizing the lower bound will possibly force d min to higher values, and then the optimization considered is:

max M min l δ l . ( 23 
)
Lemma 1: Let us consider b ordered singular values σ 1 > σ 2 > • • • > σ b .
The optimal combination of couples solution of ( 23) is:

(σ 1 , σ b ), (σ 2 , σ b-1 ) . . . (σ b/2 , σ b/2+1 ).
(24) Proof: see appendix I. Conjecture: the maximization of the minimum distance ( 21) is equivalent to the maximization of the lower bound [START_REF] Proakis | [END_REF]. Thus, the combination expressed in ( 24) is solution of [START_REF]Wireless LANs[END_REF]. Many numerical experiments confirm this conjecture.

In other words, the minimum distance ( 19) is enhanced by associating the larger singularvalue with the smaller one. The optimized distances are denoted d i for i = 1, . . . , b/2, and are computed as:

d i = δ i with the couple (σ i , σ b-i+1 ) (25) = δ(ρ i , γ i ) with σ i = ρ i cos(γ i ) σ b-i+1 = ρ i sin(γ i ) (26) 
where δ(ρ i , γ i ) is given by ( 13) with E T = 1.

As a result the minimum distances d i are the closest possible in order to optimize [START_REF] Paulraj | Introduction to space-time wireless communications[END_REF]. 

D. E-d min precoder: a cross-form matrix

Once the precoder E-d min has been designed, the final precoder matrix, F d , in (4) for a (n T , n R ) MIMO system with an arbitrary even number of datastreams, b, (min(n T , n R ) ≥ b ≥ 4) is expressed as:

F d =                  Υ 1 f (1) 1 Υ 2 f (2) 1 0 Υ 1 f (1) 2 Υ 2 f (2) 2 . . . . . . 0 Υ b 2 f ( b 2 ) 1 Υ b 2 f ( b 2 ) 2 Υ b 2 f ( b 2 ) 3 Υ b 2 f ( b 2 ) 4 0 . . . . . . Υ 2 f (2) 3 Υ 1 f (1) 3 0 Υ 2 f (2) 4 Υ 1 f (1) 4                  (27) 
where the subprecoder

F di = f (i) 1 f (i) 2 f (i) 3 f (i) 4
is the 2D-max-d min solution (Eqs. ( 10)-( 12) with E T = 1) for the

(2 × 2) eigen-channel matrix H vi = diag(σ i , σ b-i+1 ), i = 1, . . . , b/2.
The precoder has a very particular structure: the matrix F d has a cross-form. The result can also be expressed as follows:

F d = diag Υ 1 f (1) 1 , . . . , Υ b 2 f ( b 2 ) 1 , Υ b 2 f ( b 2 ) 4 , . . . , Υ 1 f (1) 4 +antidiag Υ 1 f (1) 3 , . . . , Υ b 2 f ( b 2 ) 3 , Υ b 2 f ( b 2 ) 2 , . . . , Υ 1 f (1) 2 
. (28) This form highlights a diagonal precoder (the diagonal elements) where each element is associated with a new one (the antidiagonal elements) in order to enhance the symbol transmission: with respect to diagonal precoders, this precoder introduces transmit diversity in the eigen-subchannels.

E. Extension to OFDM MIMO system

A beamforming precoder adapted to the MIMO channel at each subcarrier was proposed in the ongoing standardization IEEE 802.11n [START_REF]Wireless LANs[END_REF]. With this system, each subcarrier has a quasi-static MIMO channel [START_REF] Shen | MIMO-OFDM beamforming for improved channel estimation[END_REF], and a global matrix can be defined as:

H =       H (1) 0 . . . 0 0 H (2) . . . . . . . . . 0 0 0 . . . H (N )       ( 29 
)
where N is the number of subcarriers, and H (i) is the n R × n T channel matrix for the ith subcarrier. As previously, the channel is diagonalized with the virtual transformation:

H v =        H (1) v 0 . . . 0 0 H (2) v . . . . . . . . . 0 0 0 . . . H (N ) v        (30) 
where

H (i)
v is the b×b virtual channel of H (i) and is diagonal,

H (i) v = diag(σ (i) 1 , . . . , σ (i) 
b ). In the 802.11n standard, only the first eigenvalue is kept by the beamforming precoder, i.e. b = 1. However, the other values can offer transmit diversity exploited by the E-d min precoder. The global virtual matrix, H v , is reorganized to get a diagonal matrix with ordered elements:

H v = diag sort(σ (1) 1 , . . . , σ (1) 
b , . . . , σ

(N ) 1 , . . . , σ (N ) b ) (31)
where the values are ranked in descending order by the operator sort. The final operation consists in applying the E-d min solution to this new virtual matrix H v .

V. E-d min DIVERSITY ORDER A. Proven evidence of diversity order

To provide theoretical evidence of E-d min diversity order, let us proceed as done in [START_REF] Paulraj | Introduction to space-time wireless communications[END_REF] for the max-SNR: the system under consideration is a (n T , n R ) MIMO system with a single frequency carrier (no OFDM) associated to the E-d min solution. In addition, let us assume that the channel is uncorrelated Rayleigh fading and that the noise is an additive white gaussian noise (i.e. R n = σ n I nR ). On these assumptions, the eigen-subchannel σ i is equal to √ λ i /σ n where λ i are the eigenvalues of HH * for i = 1, . . . , b. At first, let us consider a subsystem #i with the subprecoder, F di , and the power allocation Υ 2 i (see Fig. 3). The symbol error probability (SEP) of each subsystem can be tightly approximated by [START_REF] Proakis | [END_REF]:

SEP i ≃ N e 2 erfc Υ 2 i d i 2 /(4σ 2 n ) (32)
where N e is a constant related to the average number of the nearest neighbors and d i given in (25). At high SNR, the Chernoff bound can be used to approximate the erfc function (erfc(x) ≃ e -x 2 ):

SEP i ≃ N e 2 e -Υ 2 i d i 2 /(4σ 2 n ) . (33) 
One should note that, with E-d min solution, the term

Υ 2 i d i 2 =
d 2 min is the same whatever i (i = 1, . . . , b/2) and, thus, the demonstration of the diversity order is the same for all subsystems.

Lemma 2: The minimum distance [START_REF] Paulraj | Introduction to space-time wireless communications[END_REF] computed with the optimized SV association (26) can be upper-and lowerbounded as:

E T 2 b ξλ b/2 ≤ d 2 min ≤ E T λ b/2 (34) 
where ξ = 1 -1 √ 3 . Proof: see appendix II. By using equations ( 33) and (34), SEP can be upper-and lowerbounded as:

N e 2 e - SNRλ b/2 4 ≤ SEP i ≤ N e 2 e - SNR 2 b ξλ b/2 4 ( 35 
)
where SNR = E T /σ 2 n . As the term, λ b/2 , is a random variable, SEP has to be averaged:

SEP i = E [SEP i ] (36) 
In [START_REF] Sengul | Diversity analysis of single and multiple beamforming[END_REF], the averaged result was given over the probability density function (pdf) of λ i :

∞ 0 e -βλi f λi (λ i )dλ i ≃ ǫ (β/m) -(nT -i+1)(nR-i+1) (37) 
where m = min(n T , n R ) and ǫ is a constant. Thus applying (37) to (35) leads to:

N e 2 ǫ (SNR/(4m)) -(nT -b/2+1)(nR-b/2+1) ≤ SEP i ≤ N e 2 ǫ (ξSNR/(2bm)) -(nT -b/2+1)(nR-b/2+1) . (38) 
It ensues that every subsystem and, consequently, the E-d min precoder, has a diversity order equal to (n Tb/2 + 1)(n Rb/2 + 1).

B. Diversity Order Discussion

Further to the numerous studies devoted to the diversity order of precoders, the existence of a trade-off between diversity and multiplexing has become patent [START_REF] Zheng | Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels[END_REF]. Thus, the max-SNR transmits one single symbol and achieves the maximum diversity n T ×n R [START_REF] Paulraj | Introduction to space-time wireless communications[END_REF]; when the diagonal precoders transmit b symbols, the diversity order achieved is equal to (n Tb + 1)(n Rb + 1) [START_REF] Sengul | Diversity analysis of single and multiple beamforming[END_REF]. In [START_REF] Vrigneau | Statistical comparison between max-d min , max-SNR and MMSE precoders[END_REF], we already mentioned that, despite the transmission of two symbols by the 2D-max-d min precoder, the maximum diversity order n T × n R is still achieved. The proposed extension E-d min achieves (n T -b 2 + 1)(n R -b 2 + 1) for an even value b. This diversity order is not maximum but is higher than the one by the diagonal precoder because of the particular form of [START_REF] Tarokh | Space-time codes for hight data rate wireless communication: Performance criterion and code construction[END_REF] which can be equal to zero depending on the numerical values of elements of H vi or more precisely the angles γ i = arctan(σ b-i+1 /σ i ) for i = 1, . . . , b/2. In the extreme case, the cross-form matrix can be changed into a V-form one (f

(i) 3 = f (i) 4
= 0, ∀i). The number of eigensubchannels to be used is automatically set by the E-d min precoder.

The table I permits one to compare the trade-off between the ML complexity and the diversity order. The SVD operation stands for all precoders. Note that the matrix F d in ( 27) can be directly computed via formulas ( 10)-( 12), ( 13) and ( 17). The complexity of E-d min is dominated by the ML search. The number of ML tests is given by M2 b/2 = 8b (M = 4 is fixed for the E-d min solution). The ML complexity of the E-d min grows linearly with b. Note that, with the same spectral efficiency, the diagonal precoders perform 4b ML tests.

In conclusion, for a fixed number of datastreams, the diversity order with the E-d min precoder is higher than the one by the diagonal precoders at the price of a reasonable increase in complexity (a number of ML tests twice larger).

VI. SIMULATION RESULTS

The BER curves of the E-d min precoder were assessed through 3 experiments respectively carried out to: i) evaluate its capabilities against those of diagonal precoders [START_REF] Scaglione | Optimal designs for space-time linear precoders and decoders[END_REF], [START_REF] Rostaing | Minimum BER diagonal precoder for MIMO digital transmissions[END_REF] and the truly non-diagonal MBER precoder [START_REF] Palomar | Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization[END_REF] ii) determine the impact of change in power allocation, Υ, into QoS, and iii) compare the E-d min extended to MIMO-OFDM systems with the 802.11n standard.

A. First experiment: performance of the precoder E-d min

1) BER enhancement: Figure 4 illustrates the BER simulations for the E-d min with b = 4 4-QAM symbols. The precoder is compared to diagonal precoders (MBER [START_REF] Rostaing | Minimum BER diagonal precoder for MIMO digital transmissions[END_REF] with b = 4 symbols and EE [START_REF] Scaglione | Optimal designs for space-time linear precoders and decoders[END_REF] with b = 4 or b = 2 symbols) and also with the non-diagonal ARITH-MBER precoder [START_REF] Palomar | Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization[END_REF] (truly MBER with b = 4 or b = 2 symbols). When a precoder transmits b = 4 symbols, the associated modulation is 4-QAM, and when b = 2, a 16-QAM is used. Thus, each system has the same spectral efficiency which is equal to 8 bit/s/Hz and uses n T = n R = 4 antennas.

The BERs were simulated for 10 4 random matrices H (4 × 4) with i.i.d. entries according to complex normal distribution N c (0, 1). For the same b = 4 substreams and the same 4-QAM symbols, the truly MBER with a non diagonal structure enhances the BER compared to the diagonal precoders. However, the BER of the E-d min precoder is largely improved thanks to the higher diversity order ((n This BER enhancement of E-d min can be probably explained by the two following principal reasons: i) the criterion based on the optimization of d min is particularly well suited for BER performance at high SNR regime, ii) the d min optimization leads to the jointly estimation of the power allocation and the rotation matrix which depends on the eigen-subchannels (see [START_REF] Scaglione | Optimal designs for space-time linear precoders and decoders[END_REF] and ( 11)).

T -b/2 + 1)(n R -b/2 + 1) = 9 against (n T -b+1)(n R -b+1) =
2) Probability density function of γ: as the random variable γ i is a key-parameter of the 2D-max-d min solution, it sounded us worth studying the probability density function of this Fig. 5. Probability density functions of γ 1 and γ 2 angles for a (4,4) MIMO system with uncorrelated Rayleigh fading (estimation with 10 5 random channel matrices).

M n T × n R Diagonal precoder b bM (n T -b + 1)(n R -b + 1) E-d min (M = 4) b b 2 M 2 (n T -b/2 + 1)(n R -b/2 + 1)
variable. Figure 5 plots the pdf of γ 1 and γ 2 for a (4,4) MIMO system with b = 4 and an uncorrelated Rayleigh fading channel. The angle, γ 1 , corresponds to the couple (σ 1 , σ 4 ), and γ 2 corresponds to (σ 2 , σ 3 ). 

F d2 = F octa ] = 1 -P [ F d2 = F r1 ] = 1 -P [γ 2 < γ 0 ] = 98%.
It ensues that F d1 is quasi equivalent to the max-SNR, whereas the second one, F d2 , significantly exploits the diversity proposed by σ 2 and σ 3 . On the other hand, these probabilities depend on the number of antennas in use. Thanks to its ability to adapt the number of used eigensubchannels, the E-d min can use all the singularvalues till the b/2 highest one. Table II shows how the E-d min uses the SV for a (4,4) and (6,6) MIMO system: the cross-form is more often used for a (6,6) MIMO system.

B. Second experiment: power allocation Υ based on QoS, the QoS-d min precoder

The E-d min precoder presented above relies on a d minmaximizing power allocation (analog to the Error Equal precoder). This experiment was aimed at transforming the power strategy into a Quality of Service: for each subsystem, the Υ i d i -to-Υ b/2 d b/2 ratio can be fixed in order to have about the same SNR gain in terms of BER performance between the subsystems #i and #b/2. For example, Fig. 6 shows three possible synoptics to ensure a 3dB-SNR gain. Let us consider b = 4 4-QAM symbols s 1 , s 2 , s 3 and s 4 which are separated into two 2D-max-d min subsystems. For each subsystem, the BER is simulated and should ensure a 3dB-SNR gain. This precoder is denoted QoS-d min . However, in a QoS aim, the distances d 1 , . . . , d b/2 needs to be reorganized in order to rank the d i . The ranked distances are denoted

d 1 ′ ≥ d 2 ′ ≥ . . . d b/2
′ . The Υ i coefficients are determined so as to get a 3dB gain between Υ 1 d 1 ′ and Υ 2 d 2 ′ (Fig. 6.a) and the general solution is given by: where

Υ 2 i = E T ω i d i ′2 b/2 k=1 ω k d k ′2 for i = 1, . . . , b/2 (39) 
s 2 s 3 s 1 s 4 2D max-d min 3 dB 2D max-d min d 1 ′ Υ 1 d 2 ′ Υ 2 a) QoS-d min with 4 symbols 3 dB s 1 s 2 f 2 σ 2 f 1 σ 1 b) QoS diagonal precoder with 2 symbols s 1 f 1 σ 1 s 2 f 2 σ 2 s 3 f 3 σ 3
ω 1 ≥ ω 2 ≥ • • • ≥ ω b/2 are the d i ′2 ratios related to d b/2

′2

(ω b/2 = 1). For the 3dB-QoS-d min in Fig. 6.a, we fixe w 1 = 2 and w 2 = 1. This solution is compared to 2 diagonal precoders: the 3dB-QoS precoder with either b = 2, 16-QAM symbols (Fig. 6.b) or b = 4, 4-QAM symbols (Fig. 6.c). Figure 7 depicts the BER curves from simulations of the 3 precoders with an uncorrelated Rayleigh fading channel for a (4,4) MIMO system. For every precoder, it shows about 3dB gain between the first and second datastream BERs. The SNR gain for the QoS-d min is slightly higher than 3dB. It also evidences that only two symbols have to be used by the QoS precoder to enhance the BER thanks to the diversity order. The diversity order is alike with the QoS-d min and the QoS (b = 2, 16-QAM), but the former has a SNR gain of about 1.5 dB with respect to the latter. In conclusion, the QoS-d min precoder can achieve quality of service while enhancing the transmission BER compared to the classical QoS diagonal precoder.

C. Third experiment: application to the 802.11n OFDM standard

The current 802.11n specifications propose an optional narrowband beamforming approach for each subcarrier. Note that in the time division duplex mode, unlike frequency division duplex mode, closed loop operation is based on the reciprocity between uplink and downlink channels. This is a valid assumption as long as the delay between channels is small compared to the coherence time, as is usually the case in indoor environments. To compare the E-d min precoder to the beamforming used in the 802.11n standard, BER simulations were run for a (2,2) MIMO system with 64 frequency subcarriers and b = 2 symbols per subcarrier, i.e. 64×2 = 128 transmit symbols in one OFDM symbol. The channel parameters are based on the European standard HIPERLAN/2 (ETSI BRAN HIPERLAN/2) for a wireless local area network [START_REF]ETSI EP BRAN#9, Criteria for Comparison, 30701F-WG3 PHY subgroup[END_REF] and correspond to a typical office environment under Non-Line of Sight (NLOS) conditions (150 ns average root mean squared delay spread and 1.1 µs maximum delay). Moreover, the 2D-max-d min precoder was applied to each subcarrier and simulated to evidence E-d min enhancement. Figure 8 illustrates the simulations results with the 3 precoders and shows that the 2D-max-d min and the max-SNR are appreciably equivalent for a (2,2) MIMO system as expected [START_REF] Vrigneau | max-d min precoder performances in a polarity diversity MIMO channel[END_REF], [START_REF] Vrigneau | Statistical comparison between max-d min , max-SNR and MMSE precoders[END_REF]. These simulations clearly show a large BER improvement with the E-d min compared to the max-SNR: it is of about 4 dB at a BER equal to 10 -3 . Thus, under the same conditions of Tx-CSI information and transmit power, the BER is significantly enhanced by the E-d min precoder compared to the beamforming used in the 802.11n standard.

VII. CONCLUSION

We introduced a new linear precoder for MIMO systems based on the maximization of the minimum Euclidean distance under an average total transmit power constraint. The principle of this precoder is to use the 2D-max-d min optimal solution (available for BPSK and QPSK) as a base block and to associate it with a power allocation strategy. Despite this heuristic approach provides a suboptimal solution (the optimal solution for the general case still being an open problem), it significantly improves previous results and is a good trade-off between the exact optimization and complexity. Moreover, if new optimal solution of 2D-max-d min is found for others modulations, it will need no effort to be integrated to the E-d min , due to the simple and regular structure of our precoder. It can transmit an even number of datastreams and, consequently, fully exploits large MIMO systems by increasing the data rate. This precoder has thus a diversity order higher than the diagonal solutions. Indeed, despite the trade-off between diversity and data rate, we demonstrated that the E-d min precoder can transmit twice more symbols than a diagonal solution while keeping the same diversity order. Consequently, the BER of the E-d min is significantly improved compared to either a diagonal solution with the same number of datastreams or a diagonal precoder with similar diversity order and spectral efficiency. In addition, the proposed solution is adaptable to other strategies such as quality of service where BER simulations showed an enhancement compared to the QoS diagonal precoder. At last, we extended the solution to MIMO-OFDM systems and compared it to the optimal beamforming proposed in the 802.11n standard. Under similar conditions of channel information and transmit power, the BER was significantly enhanced by the E-d min precoder.

APPENDIX I PROOF OF LEMMA 1

Before showing the Lemma, we establish three properties about the distances.

A. Preliminaries: establishment of three properties

Let us prove the following three properties : where δ(σ i , σ j ) if the optimized minimum distance associated with the SV couple (σ i , σ j ) with σ i ≥ σ j given by the 2D-max-d min solution (i.e. δ(σ i , σ j ) △ = δ(ρ, γ) with σ i = ρ cos γ and σ j = ρ sin γ in ( 13)).

δ(σ a , σ) ≥ δ(σ b , σ) if σ ≤ σ b ≤ σ a (40a) δ(σ, σ a ) ≥ δ(σ, σ b ) if σ ≥ σ a ≥ σ b (40b) δ(σ a , σ b ) ≥ δ(σ c , σ d ) if σ a > σ b > σ c > σ d (40c)
Proof of (40a): we denote subsystem #a the subsystem using (σ a , σ) and subsystem #b the subsystem using (σ b , σ). Three cases have to be studied when σ ≤ σ b ≤ σ a : i) both subsystems use F r1 The distances of the subsystems #a and #b are given by: δ

(σ a , σ) = σ a E T (1 -1/ √ 3) and δ(σ b , σ) = σ b E T (1 -1/ √ 3). Equation (40a) is then verified (σ a > σ b ).
ii) both subsystems use F octa The distance of the precoder F octa can be expressed as:

δ(σ 1 , σ 2 ) = E T (4 -2 √ 2)σ 2 2 1 + (3 -2 √ 2)σ 2 2 /σ 2 1 .
For a fixed σ 2 = σ, this function is strictly increasing with σ 1 . Consequently, we have δ(σ a , σ) > δ(σ b , σ).

iii) subsystems #a and #b use F r1 and F octa , respectively First, note that σ a > σ b implies γ a = arctan(σ/σ a ) < γ 0 < γ b = arctan(σ/σ b ), then from ( 10)-( 12) subsystem #a uses F r1 and subsystem #b uses F octa . The inverse case (F octa for subsystem #a and F r1 for subsystem #b) is then not possible. The distance of the subsystem #a can be lower bounded as

: δ(σ a , σ) = σ a E T (1 -1/ √ 3) ≥ E T (4-2 √ 2)σ 2 1+(3-2 √ 2)σ 2 /σ 2 a
because the distance of the subsystem #a is greater with F r1 than F octa (the optimal solution is obtained with F r1 because γ a < γ 0 ). In addition, by using the result in ii) we can write the following inequality :

E T (4-2 √ 2)σ 2 1+(3-2 √ 2)σ 2 /σ 2 a > E T (4-2 √ 2)σ 2 1+(3-2 √ 2)σ 2 /σ 2 b = δ(σ b , σ),
then (40a) is verified.

Proof of (40b): we denote subsystem #a the subsystem using (σ, σ a ) and subsystem #b the subsystem using (σ, σ b ). Three cases have to be studied when σ ≥ σ a ≥ σ b : i) both subsystems use F r1 The distances of the subsystems #a and #b are given by: δ

(σ, σ a ) = δ(σ, σ b ) = σ E T (1 -1/ √ 3). Equation (40b) is then verified (equality).
ii) both subsystems use F octa The distance of the precoder F octa can be expressed as:

δ(σ 1 , σ 2 ) = E T (4 -2 √ 2)σ 2 1 σ 2 1 /σ 2 2 + (3 -2 √ 2) .
For a fixed σ 1 = σ, this function is strictly increasing with σ 2 . Consequently, we have δ(σ, σ a ) > δ(σ, σ b ).

iii) subsystems #a and #b use F octa and F r1 , respectively First, note that σ a < σ b implies γ a > γ 0 > γ b , then from ( 10)-( 12) subsystem #a uses F octa and subsystem #b uses F r1 . The inverse case is then not possible. The distance of the subsystem #a can be lower bounded as : δ(σ, σ a ) =

E T (4-2 √ 2)σ 2 σ 2 /σ 2 a +(3-2 √ 2)
> σ E T (1 -1/ √ 3) because the distance of the subsystem #a is greater with F octa than F r1 (the optimal solution is obtained with F octa because γ a > γ 0 ).

Consequently, δ(σ, σ a ) > δ(σ, σ b ) = σ E T (1 -1/ √ 3).

Proof of (40c): since σ a > σ b > σ c > σ d , it follows from (40b) and (40a) that δ(σ a , σ b ) > δ(σ a , σ d ) and δ(σ a , σ d ) > δ(σ c , σ d ).

Thanks to these three properties, Lemma 1 will be proven in the following by mathematical induction.

B. The base clause

Let us consider four ordered values σ 1 > σ 2 > σ 3 > σ 4 . There are three possible combinations of couples. Table III shows the three cases and compares the minimum distances. By using (40) in Table III, one can conclude that the minimum distance is optimized with the couples (σ 1 , σ 4 ) and (σ 2 , σ 3 ). IV), but the couple including σ 1 never gives the minimum distance and can be discarded thanks to (40). For example, in the case 6, δ(σ 1 , σ 7 ) > δ(σ 2 , σ 8 ) then the association (σ 1 , σ 7 ) doesn't give the minimum distance and is discarded. Otherwise, by using properties (40), the largest distance of the column i in Table IV is obtained with the association (σ i , σ b-i ). Thus, the minimum distance is maximized in the case b -1 = 7 and Lemma 1 is proven.

C. The induction step

Hypothesis

One should note that some different combinations of couple should give the same optimized minimum distance. For example, if δ(σ 3 , σ 6 ) is the minimum distance in the case 6 than the two following associations give the same minimum distance: {(σ 1 , σ 8 )(σ 2 , σ 7 )(σ 3 , σ 6 )(σ 4 , σ 5 )} and {(σ 1 , σ 7 )(σ 2 , σ 8 )(σ 3 , σ 6 )(σ 4 , σ 5 )}.

APPENDIX II PROOF OF LEMMA 2 A. Lower bound

The E-d min optimized minimum distance is given by ( 19) and (25), and is lower bounded as: 

We recall that d i is given by (26). From [START_REF] Collin | Optimal minimum distance-based precoder for MIMO spatial multiplexing systems[END_REF], let us derive the relation: and deduce the upper bound thanks to (43):

d 2 min ≤ d b/2 2 ≤ E T λ b/2 . (47) 

IEEE

  Journal of Selected Topics in Signal Processing (IEEE JSTSP) Special issue on "MIMO-Optimized Transmission Systems for Delivering Data and Rich Content" pp 135 -146, Vol 2, No 2, April 2008

Fig. 1 .

 1 Fig.1. MIMO block diagram with linear precoder and decoder for the diagonal solutions: the optimization of (F, G) leads to a diagonalized channel with eigenmode power allocation and independent ML decisions with a complexity of b × M .

Fig. 2 .

 2 Fig. 2. MIMO block diagram of a non-diagonal general max-d min precoder: the ML decision searches over all candidate transmitted symbol vectors and gives a complexity of M b (b × M for a diagonal precoder).

Fig. 3 .

 3 Fig. 3. Synoptic of E-d min solution with the main steps: creation of the b/2 subsystems with the optimal combination of singularvalues, the determination of subprecoders e F di with the 2D-max-d min solution and power allocation, Υ 2 i . There are b/2 independent ML decisions with a complexity of b/2×M 2 (b × M for the diagonal precoders).

Fig. 4 .

 4 Fig. 4. Comparison of E-d min (b = 4, 4-QAM symbols) with MBER (b = 4, 4-QAM), EE (b = 4, 4-QAM or b = 2, 16-QAM) and truly MBER (b = 4, 4-QAM or b = 2, 16-QAM) for a (4,4) MIMO system with 8 bit/s/Hz and uncorrelated Rayleigh fading channel.

1

 1 for the diagonal one). The comparison of E-d min with the truly MBER and the diagonal EE precoder with b = 2 and 16-QAM shows 2 that the BER of the E-d min precoder is significantly enhanced at high SNR. On the other hand, at SNR below 6 dB, the E-d min is slightly less efficient than truly MBER and EE with b = 2. Note that, diagonal EE and MBER precoders with b = 2 and 16-QAM give an equivalent BER performance and the diagonal MBER is not plotted for clarity.

Figure 5

 5 highlights their different behaviors. Indeed, γ 1 takes small values (E[γ 1 ] = 8 • ≪ γ 0 ): the subprecoder F d1 statistically uses more often only σ 1 . The probability is P [ F d1 = F r1 ] = P [γ 1 < γ 0 ] = 97%. The second subprecoder F d2 has a totally different strategy. Indeed, σ 2 and σ 3 are close (E[γ 2 ] = 30 • ≫ γ 0 ): the subprecoder statistically chooses to use the two eigen-subchannels. The probability is P [

Fig. 6 .

 6 Fig. 6. Three possible 3dB-QoS synoptics: (a) QoS applied to the optimized minimum distance of two subsystems, (b) QoS applied to 2 eigen-subchannels and (c) QoS applied to 4 eigen-subchannels. Cases b) and c) correspond to the classical QoS diagonal precoder

Fig. 7 .

 7 Fig. 7. BER simulations of the QoS-d min compared to the diagonal QoS precoder (b = 2, 16-QAM or b = 4, 4-QAM) with a (4,4) MIMO uncorrelated Rayleigh fading channel.

Fig. 8 .

 8 Fig. 8. BER simulation with the ETSI BRAN channel model for a (2,2) MIMO system and 64 subcarriers.

  : let us consider b -2 ordered singularvalues such asα 1 > α 2 > • • • > α b-2 (b ≥ 6).The combination of couples maximizing[START_REF] Paulraj | Introduction to space-time wireless communications[END_REF] is:(α 1 , α b-2 ), (α 2 , α b-3 ), . . . , (α b/2-1 , α b/2 )(41)Let us now consider b singularvalues such asσ 1 > σ 2 > • • • > σ b-1 > σ b . The number of cases to study is equal to b/2 i=1 (b -2i + 1) = (b -1)(b -3) • • • × 3 × 1,but it can be reduced as follows. Indeed, let us consider all the couples including σ 1 . There are still b -2 values to be associated, but the starting hypothesis gives the combination that maximizes the minimum distance. It ensues that the number of cases is now b-1. Without loss of generality and for the sake of clarity, TableIVshows the optimized solution for b = 8. For the cases 1 to b -2 = 6, the couple achieving the minimum distance remains undetermined (columns 2 to b/2 = 4 in Table

ξλ i ≤ d i 2 ≤ 1 √ 3 .

 213 λ i with i = 1, . . . , b/2 (43) where ξ = 1 -The eigenvalues λ i are ordered as λ 1 > λ 2 > • • • > λ b/2 and consequently: ξλ b/2 ≤ d i 2 ∀i = 1, . . . , b/2
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  IEEE Journal of Selected Topics in Signal Processing (IEEE JSTSP) Special issue on "MIMO-Optimized Transmission Systems for Delivering Data and Rich Content" pp 135 -146, Vol 2, No 2, April 2008 F d . The solution given in (27) is a cross-form matrix where a diagonal structure is associated to an antidiagonal one to create transmit diversity. However, this precoder can adapt the structure of the matrix F d according to the (2,2) eigenchannel matrices H vi . The elements f

	null unlike f	(i) 3 and f	(i)	(i) 1	and f	(i) 2	are never

TABLE I TRADE

 I -OFF BETWEEN THE ML COMPLEXITY AND THE DIVERSITY ORDER WITH log 2 (M ) TRANSMIT BITS PER DATA-SUBSTREAM

	Precoder	used subchannels	Number of ML tests	Diversity order
	max-SNR	1		

TABLE II PERCENTAGES

 II OF THE NUMBER OF EIGEN-SUBCHANNEL USED BY THE E-d min PRECODER (b = 4) FOR UNCORRELATED RAYLEIGH FADING

			CHANNEL	
	MIMO	cross-form	intermediate form	V-form
	system 4 eigen-subchannels: 3 eigen-subchannels: 2 eigen-subchannels:
		(σ 1 , σ 2 , σ 3 , σ 4 )	(σ 1 , σ 2 , σ 3 )	(σ 1 , σ 2 )
	(4,4)	3%	95%	2%
	(6,6)	91%	9%	0%
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TABLE III THE

 III THREE POSSIBLE COMBINATIONS OF COUPLES FOR b = 4 (σ 1 > σ 2 > σ 3 > σ 4 ) WITH THEIR ASSOCIATED MINIMUM DISTANCES , σ 2 ) (σ 3 , σ 4 )

	combination	Couples	Properties which determines	Minimum distance	d min comparison
			d min of the combination		between cases
	Case 1	(σ 1 δ(σ1, σ2) ≥ δ(σ3, σ4)	δ(σ3, σ4)	
	Case 2	(σ 1 , σ 3 ) (σ 2 , σ 4 )	δ(σ1, σ3) ≥ δ(σ2, σ4)	δ(σ2, σ4)	δ(σ2, σ4) ≥ δ(σ3, σ4)
	Case 3	(σ 1 , σ 4 ) (σ 2 , σ 3 )		UNDETERMINED	δ(σ1, σ4) ≥ δ(σ2, σ4) δ(σ2, σ3) ≥ δ(σ2, σ4)

Note that for b = 2, the diagonal precoder increases the diversity order to (n Tb + 1)(n Rb + 1) = 9 (same diversity order as E-d min ).

Combinations (assuming hypothesis)Minimum distance may be achieved by:hypothesis ←---------------------→ column 1 column 2 column 3 column 4 case 1 (σ 1 , σ 2 ) (σ 3 , σ 8 ) (σ 4 , σ 7 ) (σ 5 , σ 6 ) (σ 3 , σ 8 ) (σ 4 , σ 7 ) (σ 5 , σ 6 ) case 2 (σ 1 , σ 3 ) (σ 2 , σ 8 ) (σ 4 , σ 7 ) (σ 5 , σ 6 ) (σ 2 , σ 8 ) (σ 4 , σ 7 ) (σ 5 , σ 6 ) case 3 (σ 1 , σ 4 ) (σ 2 , σ 8 ) (σ 3 , σ 7 ) (σ 5 , σ 6 ) (σ 2 , σ 8 ) (σ 3 , 7 ) (σ 5 , σ 6 ) case 4 (σ 1 , σ 5 ) (σ 2 , σ 8 ) (σ 3 , σ 7 ) (σ 4 , σ 6 ) (σ 2 , σ 8 ) (σ 3 , σ 7 ) (σ 4 , σ 6 ) case 5 (σ 1 , σ 6 ) (σ 2 , σ 8 ) (σ 3 , σ 7 ) (σ 4 , σ 5 ) (σ 2 , σ 8 ) (σ 3 , σ 7 ) (σ 4 , σ 5 ) case 6 (σ 1 , σ 7 ) (σ 2 , σ 8 ) (σ 3 , σ 6 ) (σ 4 , σ 5 ) (σ 2 , σ 8 ) (σ 3 , σ 6 ) (σ 4 , σ 5 ) case 7 (σ 1 , σ 8 ) (σ 2 , σ 7 ) (σ 3 , σ 6 ) (σ 4 , σ 5 ) (σ 1 , σ 8 ) (σ 2 , σ 7 ) (σ 3 , σ 6 ) (σ 4 , σ 5 )largest distance for each column =⇒ δ(σ 1 , σ 8 ) δ(σ 2 , σ 7 ) δ(σ 3 , σ 6 ) δ(σ 4 , σ 5 )