

Importance of particle formation to reconstructed water column biogenic silica fluxes

Brivaëla Moriceau, Morgane Gallinari, Karline Soetaert, Olivier Ragueneau

► To cite this version:

Brivaëla Moriceau, Morgane Gallinari, Karline Soetaert, Olivier Ragueneau. Importance of particle formation to reconstructed water column biogenic silica fluxes. Global Biogeochemical Cycles, 2007, 21, pp.GB3012. 10.1029/2006GB002814. hal-00381220

HAL Id: hal-00381220 https://hal.univ-brest.fr/hal-00381220

Submitted on 23 Jun 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 2	Importance of particle formation to reconstructed water column biogenic silica fluxes
3	
4 5	by Moriceau, Brivaëla, Gallinari, Morgane, Soetaert, Karline, Ragueneau, Olivier
6 7	UMR CNRS 6539, Institut Universitaire Européen de la Mer, Place Copernic, Technopôle Brest-Iroise, 29280 Plouzané, France
8	Running title: Reconstruction of bSiO ₂ fluxes from dissolution experiments
9	Revised manuscript to be submitted (April 2007) to
	Global Biogeochemical Cycles
	Key Words: Biogenic silica fluxes, dissolution, aggregate, modelling
10	Manuscript submitted: 1) Revised version of ms submitted:
11	2) Manuscript eventually accepted:
	For correspondence:
	Brivaëla MORICEAU
12 13 14	UMR 6539, Institut Universitaire Européen de la Mer Technopole Brest-Iroise, Place Nicolas Copernic F – 29280 Plouzané, France Tel: ++33 2.98.49.88.99 • Fax: ++33 2.98.49.86.45 E-mail: moriceau@univ-brest.fr

15 Abstract

16 The particles sinking out of the ocean's surface layer are made up of a mixture of living and dead 17 algal cells, fecal pellets and aggregates, while the parameters used to describe the behaviour of 18 biogenic silica (bSiO₂) in today's models are experimentally determined on freely suspended 19 diatoms (FC). In a simple advection-reaction model we combine sinking rates of FC, 20 zooplankton fecal pellets and aggregates with recent measurements of bSiO₂ dissolution to 21 reconstruct theoretical downward profiles of bSiO₂ fluxes at 8 sites in the world ocean. Statistical 22 analyses showed that sinking and dissolution parameters for two pools of bSiO₂ are required to 23 model particle fluxes accurately. The 2-pool model results confirm the importance of seasonality for particle formation and its connection to the percentage of the bSiO₂ production that reaches 24 25 the seafloor. The depth of bSiO₂ recycling appears to be influenced more by particle formation 26 than by dissolution rates of bSiO₂ or the ballast effect of the dense diatom frustules.

27

28 **1. Introduction**

29 Diatoms form the basis of a short food chain that leads to carbon export to higher trophic 30 levels [Cushing, 1989; Thornton, 2002] and to deeper waters [Buesseler, 1998]. They are an 31 important player in the global carbon cycle because of their participation in an efficient food web 32 and their ability to aggregate [Smetacek, 1999]. Because diatoms require silica to build their 33 frustules, their share in total primary production (PP) depends on the availability of the nutrient 34 silicic acid (DSi) in many regions of the world ocean such as the equatorial Pacific [Dugdale et 35 al., 1995; Leynaert et al., 2001] or the Southern Ocean [Brzezinski et al., 2001; Pondaven et al., 1998]. The availability of DSi in surface waters, in particular relative to other nutrients, is linked 36 37 to the composition of the source waters in upwelling regions and/or the intensity of biogenic 38 silica (bSiO₂) recycling in surface waters in other oceanic regions. Depending on the depth of 39 bSiO₂ dissolution, diatom production is affected on different time scale. Shallow depth 40 mineralization immediately influences diatom production and phytoplankton dynamics [Officer 41 and Ryther, 1980]. Recycling in intermediate waters [Sarmiento et al., 2004] and/or deep waters 42 [Ragueneau et al., 2000] affects the meridional distribution of DSi or the redistribution of DSi 43 among oceanic basins, respectively, with implications for intermediate to long time scales. 44 A global average of 60% of the bSiO₂ produced in surface waters is recycled in the first 100 m 45 [Nelson et al., 1995; Tréguer et al., 1995]. This global mean hides large regional differences 46 [Nelson et al., 1995; Ragueneau et al., 2000, 2002], which can not be related to any simple trend 47 in production or diatom abundance, nor to any single mechanism known to influence dissolution, 48 such as temperature [Lawson et al., 1978] or bacterial activity [Bidle and Azam, 1999]. The 49 dissolution to production ratio, integrated over the surface layer (D: P), has been related to the 50 formation of diatom blooms by Brzezinski et al. [2003]; this ratio is lower during blooms, 51 leaving more room for export and deeper recycling. However, the use of global biogeochemical 52 models to reproduce both DSi and bSiO₂ flux profiles in the global ocean is difficult and does

not always agree with in situ measurements [*Aumont et al.*, 2003]. We hypothesize that the present difficulty in modeling both the $bSiO_2$ and DSi profiles of the global ocean are due to underestimating the importance of particle formation. Whereas aggregates and fecal pellets of large grazers are major vehicles for export [review in *Turner*, 2002 and *Thornton*, 2002], the parameters used to represent the fate of PP in global ocean models are still measured on freely suspended diatoms.

59 To test this hypothesis, we developed a simple advection-reaction model using one and then 60 two different pools of particles. The model combines a series of in vitro bSiO₂ dissolution 61 experiments undertaken on the different constituents of the flux: freely suspended diatoms 62 [compiled in Van Cappellen et al., 2002], zooplankton fecal pellets [Gallinari et al., unpublished; Schultes et al., 2004] and aggregates [Moriceau et al., 2007] with data on bSiO₂ 63 64 production, export and deep fluxes from 8 biogeochemical provinces of the world ocean 65 [described in Ragueneau et al., 2002]. The bSiO₂ downward fluxes are modeled to fit the 66 downward flux data at the eight sites. This allows us to derive important information about particle formation in the upper ocean. The composition of the bSiO₂ fluxes in terms of large or 67 68 small particles and, the sinking and specific bSiO₂ dissolution rates of each component help to 69 unravel mechanisms involved in the spatial variability of the intensity and depth of bSiO₂ 70 dissolution.

71 2. Approach: from laboratory experiments to a virtual water column

72

2.1. Experimental measurements

The flux of matter sinking through the water column is mainly composed of freely suspended phytoplankton cells, aggregates, and zooplankton fecal pellets [*Turner*, 2002; *Thornton*, 2002]. Specific bSiO₂ dissolution rates are usually measured experimentally on freely suspended diatoms [compiled by *Van Cappellen et al.*, 2002]. Recently, however, specific dissolution rates of bSiO₂ incorporated into aggregates [*Moriceau et al.*, 2007] and fecal pellets 78 [Schultes, 2004; Gallinari, unpublished] have been measured in the laboratory and shown to be 79 about half the rates measured on freely suspended diatoms (Table 1). Including the dissolution 80 rates of all particle types in models should enable us to predict the bSiO₂ sedimentation flux 81 more precisely. Here we consider a model of bSiO₂ flux with depth that includes two types of 82 particles (free diatom cells: FC and large particles: LP). We can keep the model simple with 83 only two particle types by assuming that the sinking rates and specific bSiO₂ dissolution rate of 84 aggregates and fecal pellets are similar as is demonstrated in Table 1. The FC group has the 85 slow sinking rate and fast specific bSiO₂ dissolution rate characteristic of free diatom cells. The 86 LP group has faster sinking rates than the FC and half the specific bSiO₂ dissolution rate. For 87 comparison, the model was first run using only one type of particle with sinking properties and 88 bSiO₂ dissolution rates between those of FC and LP particles as described below.

89 The data used for this study were collected in eight biogeochemical provinces of the 90 world ocean, for which annual measurements of bSiO₂ production, export and deep fluxes (at 2 91 depths) are available [data in Ragueneau et al., 2002]. In this dataset, export fluxes (at 200 m) 92 were derived from models or from sediment trap measurements while deeper water fluxes (1000 93 and 3000 m depth) were measured using sediment traps. Two sites are located in the Equatorial 94 (EqPac) and North Pacific (OSP), and two in the North Atlantic Ocean (PAP and BATS). Four 95 are located in the Southern Ocean: one north of the Polar Front in the Pacific sector (NACC), 96 two in the Polar Front Zone of the Atlantic (APFA) and Pacific (APFP) sectors, and one just 97 south of the Polar Front in the Indian sector (POOZ) (see positions in Table 2). Four data points 98 can be fitted for each site, providing a total of 32 data points.

99

100 **2.2. Model description**

101 The concentration profiles of bSiO₂ for each particle pool i (LP or FC) can be described
102 by a simple advection-reaction model (Eq. 1):

103

104
$$\frac{\partial bSiO_{2i}}{\partial t} = -S_i \cdot \frac{\partial bSiO_{2i}}{\partial z} - k_i(T) \cdot bSiO_{2i}$$
(1)

105

where t is time (d), z depth (m), S_i is the sinking rate (m d⁻¹), and $k_i(T)$ is the (temperaturedependent) first-order specific bSiO₂ dissolution rate (d⁻¹). Such first-order dissolution of bSiO₂ is often observed in batch experiments and leads to a simple exponential increase in the DSi concentration as a function of time [e.g. *Greenwood et al.*, 2001].

Assuming steady-state $\left(\frac{\partial b \text{SiO}_{2i}}{\partial t}=0\right)$, and constant sinking and dissolution rates, the concentration (mmol m⁻³) and flux of bSiO₂ (mmol m⁻² d⁻¹) at each water column depth (z) are given by equation 2:

113

114
$$bSiO_{2i}(z) = bSiO_{2i}(0) \cdot e^{-\frac{k_i}{S_i}z}$$
 (2)

115

116 which in terms of the total fluxes for the 1-particle model and the 2-particle model gives 117 equation 3 and 3'respectively:

118

122 where α and (1- α) correspond to bSiO₂ production (PP_{bSiO2}, in mmol m⁻² d⁻¹) in the FC and the 123 LP groups in the upper layer, respectively.

124 As temperature is allowed to vary, we use a piecewise approximation to model equation 125 3. The water column is subdivided into a number of layers (with thickness Δz) in which 126 temperature is assumed constant. Then, for each fraction, the flux at the bottom ($z + \Delta z$) and top 127 (z) of this layer are related by:

128

129
$$FbSiO_{2i}(z + \Delta z) = FbSiO_{2i}(z) \cdot e^{-\frac{ki(T)}{S_i} \cdot \Delta z}$$
(4)

130

For the 1-particle model the flux at z = 0 equals the bSiO₂ production (PP_{bSiO2}), and for the 2particle model the bSiO₂ flux at each depth is the sum of the LP and FC fluxes.

FbSiO_{2FC}(0) =
$$\alpha \cdot PP_{bSiO_2}$$

FbSiO_{2LP}(0) = $(1 - \alpha) \cdot PP_{bSiO_2}$ (5)
FbSiO_{2TOT}(z) = FbSiO_{2FC}(z) + FbSiO_{2LP}(z)

134

In these equations, $FbSiO_{2TOT}(z)$ is the flux of total $bSiO_2$ in mmol m⁻² d⁻¹ at depth z; 135 PP_{bSiO2} is the production flux of $bSiO_2$ in mmol m⁻² d⁻¹; $FbSiO_{2 FC}(z)$ and $FbSiO_{2 LP}(z)$ are the 136 137 fluxes of bSiO₂ in the FC and LP groups at depth z respectively. $k_{FC}(T)$ and $k_{LP}(T)$ are the specific $bSiO_2$ dissolution rates in d^{-1} given in the literature for FC particles (Table 1) and 138 139 corrected by the factor of 2 less that was measured experimentally for LP particles. Rates were 140 also corrected for temperature, according to equation (6) from Rickert et al. [2002]; temperature 141 profiles of the water column at each site were from the NODC (Levitus) World Ocean Atlas 142 1998 (http://www.cdc.noaa.gov/).

144
$$\ln(k_z(T_2)) = \ln(k_1) + \frac{E_{app}}{R} \times \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$
 (6)

145

146 where k_1 is the specific bSiO₂ dissolution rate in d⁻¹ measured in controlled conditions in the 147 laboratory; T₁ is the experimental temperature in degrees Kelvin (286.15 K); $k_z(T_2)$ is the rate 148 recalculated for the depth z at the in situ temperature T₂; and Eapp/R = 7211 °K.

To facilitate comparison among sites, the total flux is normalized to the production flux
to obtain a profile of bSiO₂ flux expressed in % of bSiO₂ production.

151 For both models we have:

152

153 %FbSiO₂(z) =
$$\frac{\text{FbSiO}_{2\text{tot}}(z)}{\text{PP}_{bSiO_2}} \times 100$$
 (7)

154

156

157 %FbSiO₂(z) =
$$\frac{FbSiO_{2FC}(z) + FbSiO_{2LP}(z)}{PP_{bSiO_2}} \times 100$$
 (7')

158

159 2.3. Parameter determination

As a first step, we applied the 1-pool model to fit the $bSiO_2$ flux profiles measured in the field. The specific dissolution rate was set to the value given in Table 1 for FC, and corrected for temperature at each site and depth using eq. 6. At each site, the model 1 calculated the $bSiO_2$ sinking rate required to fit the in situ $bSiO_2$ flux data. Note that the fit is not improved when the model uses LP specific dissolution rates instead of k_{FC} nor an average of the two values. In a second step, $bSiO_2$ specific dissolution rates and the sinking rates for two pools of particles were included in the model (model 2). Specific $bSiO_2$ dissolution rates of FC and LP were set to values presented in Table 1 and corrected for in situ temperature at each depth using equation 6. The model 2 calculated a global sinking rate for FC particles (S_{FC}) for all sites, one LP sinking rate per site and the percent of $bSiO_2$ from the production which is incorporated into large particles (1- α) or stays freely suspended (α).

171 Finally in a third step (model 3), the parameter S_{FC} was allowed to vary at each site.

In the three versions of the model, parameters were calculated by minimizing the sum of the square residuals using the Excel Solver and the GRG method (Generalized Reduced Gradient). These calculations were tested for many initial values because the algorithm used is non linear. Best fits to the data using the three model versions are shown for each of the eight sites in Fig. 1.

176

177 2.4. Statistical comparison of the 1-particle and 2-particle models

We used an F-test to compare the three versions of the model. The null hypothesis considers that adding complexity to the model does not significantly decrease the sum of the square residuals between model and observed data (SSR). The calculated F value is obtained using equation (8) and compared to the F test critical value.

182
$$F = (SSR1-SSR2) (df1-df2) / (SSR2/df2)$$
 (8)

SSR1 and SSR2 are the sum of the square residuals between the modeled and the experimental values; df1 and df2 are the degrees of freedom of the different versions of the model calculated as follow.

186 dfi = E - P - 1 (9)

187 With E, the number of observed values the models has to fit (4 data for each of the 8 sites), and P188 the number of variable parameters used to optimize the fit.

The F test was first applied to compare the 1-particle model (hereafter referred to as model 1) to a 2-particle model using a global S_{FC} (model 2). Next, we compared two versions of the 2-particle model, one using a global S_{FC} (model 2 again) and one using a variable S_{FC} at each site (model 3). When the model considered only one type of particle, it had 23 degrees of freedom. Model 2 used 17 parameters, providing14 degrees of freedom. Finally, model 3 had 7 degrees of freedom.

195

196 **3. Results**

3.1. Comparison of the model versions: Importance of particle formation

198 Figure 1 shows the reconstructed bSiO₂ profiles at the eight sites for the three versions of 199 the model. Model 1 is clearly not able to fit the experimental data at any of the eight sites. When 200 the model uses two different pools of bSiO₂ but only one global S_{FC}, the bSiO₂ profiles are close 201 to the measured values except for APFP, NACC and PAP. The F-test determined, at a 99% 202 confidence level, that model 2 provides a better fit to the data than model 1. Thus the use of a global S_{FC} of 2.76 m d⁻¹ (Table 2) is a good approximation. Note that at the PAP site, the flux at 203 204 1000 m is low compared to the flux at 3000 m and can be explained by the presence of 205 swimmers in the trap [Lampitt et al., 2001].

Model 2, which considered a global FC sinking rate (S_{FC}), gives more degrees of freedom than model 1, but the use of a global S_{FC} is also an oversimplification. Indeed, for the PAP site in the North East Atlantic Ocean, and for the NACC and APFP sites located in the Pacific sector of the Southern Ocean (North of the Polar Front and on the Polar Front respectively), this approach doesn't fit the data closely. To improve the reconstruction of these bSiO₂ fluxes, the model has to use a S_{FC} higher than the global one. Reconstructions of the Southern Ocean profiles are generally improved by using model 3 with a varying S_{FC} (Fig. 1). The F-test also favors model 3 over model 2 at the 95% confidence level. At the annual scale, FC sinking rates can be classified into two groups: fast S_{FC} in the Southern Ocean and PAP site and slow S_{FC} in the rest of the world. This trend may well reflect the production of large, fast sinking diatoms commonly observed in the Southern Ocean [*Kemp et al.*, 2006].

217 Freely suspended diatoms and large particles have such different sinking rates and 218 specific bSiO₂ dissolution rates that parameters of the two groups of particles must be considered 219 to correctly reconstruct bSiO₂ flux profiles. The role and importance of each particle type is 220 confirmed by a sensitivity analysis performed on the profiles using model 3 for the sinking rates 221 of the two particles (shown for POOZ, Fig. 2). Profiles of bSiO₂ fluxes are quite sensitive to 222 variation in sinking rates: in the upper 1000 m the profile is mostly affected by the sinking rate 223 of FC whereas deeper, the profile is more sensitive to variation of the LP sinking rate. The 224 composition of the flux in the upper layer (parameter α) is well constrained, as when the 225 contribution of FC and LP changes by only 5-10 %, the resulting profile of bSiO₂ flux 226 significantly differs from the one measured (Fig. 2c).

227

228 **3.2. Model outputs**

For the eight sites, model 3 provides sinking rates ranging from 45 to 605 m d⁻¹ for the 229 LP and from 0.1 to 10.4 m d⁻¹ for the FC (Table 2; Fig. 1), consistent with ranges found in the 230 231 literature (Table 1). The sinking rates calculated by model 3 confirm the prevalence of 232 aggregates and fecal pellets in the LP group (see values and references in Table1) and the fact 233 that the FC group must be essentially composed of freely suspended diatoms, small and large. 234 Note that the 2- particles models (models 2 and 3) can not always strictly separate LP and FC using bSiO₂ sinking and specific dissolution rates. For the two sites located in the Southern 235 236 Ocean (APFP and NACC) and for PAP, model 3 produces faster FC sinking rates and a faster LP sinking rates than those calculated by model 2. The S_{FC} calculated by the model 2 is in these 237

238 cases lowered by the other sites' S_{FC}. The difference between the results of the two models for 239 APFP, NACC and PAP shows the importance of a third group of particles that is included in LP 240 in model 2 results and in FC in model 3 results. Large diatoms that have been observed in areas 241 like the Southern Ocean, Gulf of California, and North Pacific Gyre [Kemp et al., 2000, 2006] 242 apparently dominate the production of APFP, NACC and PAP. Following the same argument, 243 the very low S_{LP} and S_{FC} calculated by model 3 for APFA and POOZ suggest simultaneous 244 production of small and large diatoms. Therefore, there are really three groups of particles (LP, 245 freely-suspended large cells, and freely-suspended small cells); however, the large, freely-246 suspended diatoms have been included in the LP group here as the best compromise since the 247 model can only account for two groups of particles.

Also, even if not shown here, giant aggregates with small and even null sinking rates such as those observed by *Rinaldi et al.* [1995] would certainly be integrated into the FC group of particles.

251

252 4. DISCUSSION

253 4.1. Particle formation: a major factor determining bSiO₂ export and recycling

254 In their global analysis of bSiO₂ production and dissolution, Brzezinski et al. [2003] 255 demonstrated that the dissolution to production ratio integrated over the surface layer ([D:]P) is 256 low under bloom conditions, leaving ample room for net export. They underlined the importance 257 of considering dissolution when determining export of matter. Using the model results, we 258 compare the importance of the two processes, sinking and dissolution, by calculating particle 259 residence times in the mixed layer at each site with only sinking or only dissolution considered 260 (Table 3). The comparison of these bSiO₂ residence times in surface waters suggests that this 261 global data set of bSiO₂ production and dissolution cannot ignore particle formation. Sinking rates of large particles act on much shorter time scales than dissolution rates, so, rather than 262

263 having the export determined by the intensity of the recycling, the intensity of export (1-D) is 264 linked to the rate of large particle formation and drives the intensity of shallow-water recycling. 265 The rate at which diatoms are incorporated into large particles will determine how rapidly 266 exported they are as their fast sinking rates leave no time for dissolution to occur in surface 267 waters. In such cases, the dissolution depth is translated downward. The recycling intensity in 268 surface waters depends first on the ability of diatoms to remain as single cells and secondly on 269 factors such as temperature [Bidle et al., 2002; Fujii and Chai, 2005; Lawson et al., 1978] and 270 bacterial activity [Bidle and Azam, 1999] which control their fate in surface waters.

Thus, we suggest that low D: P ratios under bloom conditions [*Brzezinski et al.*, 2003] 271 272 are caused by a rapid export of bloom diatoms [Buesseler, 1998], which extracts bSiO₂ from the 273 surface waters where intense recycling generally occurs under non-bloom conditions. 274 Recognizing the importance of seasonality to the sinking of particles, we calculated the 275 seasonality index of each site as defined by Berger and Wefer [1990] (Table 2) as six minus the 276 number of months necessary to generate one half of the annual productivity when the data are 277 ordered from the most productive to the least productive month (the 'production half-time'). 278 Considering productivity, the eight sites could be classified in three groups [Berger and Wefer, 279 1990]: EqPac and BATS have constant productivity (seasonality index close to 0); OSP, APFA, 280 NACC, POOZ, PAP have sinusoidal production (seasonality index between 2 and 3) and APFP 281 has a strong seasonal peak in productivity (seasonality index > 3.5). As shown in Figure 3, sites 282 exhibiting the lowest seasonality (EqPac, BATS) also exhibit the lowest export at 100 m (i.e. low 283 1-JD:JP). Conversely, sites with higher seasonality (APFP, NACC and APFA) display a larger 1-284 [D:]P at 100 m. Even if seasonality is not the only important factor, Figure 3 confirms its major 285 role in particle formation. Indeed grazing and aggregation processes are more abundant at the 286 end of a bloom [Buesseler, 1998] and consequently the export of matter out of the surface layer 287 is also increased. To properly model diatom export versus recycling, further research efforts must focus not only on dissolution properties, but perhaps more importantly, on representingparticle formation during bloom termination.

290 Another implication of our model results concerns the ballast theory. Armstrong et al. 291 [2002] established a correlation between organic carbon and ballast (bSiO₂, CaCO₃) fluxes 292 below the mixing layer. Based on this model, Klaas and Archer [2002] concluded that organic 293 carbon is carried into the deeper waters preferentially by calcium carbonate, which has a higher density (2.71 g cm⁻³) than opal (2.1 g cm⁻³). Passow [2004] proposed the inverse of this 294 295 hypothesis, that carbon, in the form of TEP, could transport organic matter and ballast to the 296 deep sea by promoting aggregation. In APFP, OSP and NACC sites (Table 2), the fast S_{LP} 297 suggested the dominance of large diatoms. At these sites, freely suspended diatoms can be 298 exported from the mixed layer (Table 4) due to the low temperature at the surface layer and/or 299 high sinking rates. But at most other sites, even ballasted with a frustule whose density is twice that of organic matter (1.06 g cm⁻³), a single diatom almost completely dissolves in the upper 300 301 WML. This observation calls for more caution when considering the ballast theory and 302 emphasizes once again the importance of bloom-ending processes to explain sedimentation 303 fluxes. The fact that POC and ballast fluxes are closely linked below the mixed layer [Armstrong 304 et al., 2002] is not necessarily related only to the higher density of bSiO₂ and CaCO₃ compared 305 to that of organic matter. The efficiency of sedimentation depends primarily on the incorporation 306 of diatoms into large particles like aggregates or fecal pellets (Fig. 2c) in the mixed laver; the 307 ballasting of these large particles throughout the whole water column plays a secondary role 308 (Fig. 2b).

309

310 **4.2. Implications for the silicate pump**

The silicate pump is the process by which bSiO₂ is exported from surface waters with a greater efficiency than PON, driving the system towards DSi limitation. According to *Dugdale et* 313 al., [1995], grazers are the motor of this silicate pump; whereas nitrogen is largely assimilated or 314 recycled by grazers and therefore retained at the surface, bSiO₂ is packaged into fast-sinking 315 fecal pellets and exported from the mixed layer. The silicate pump model was developed initially 316 for the Equatorial Pacific [Dugdale and Wilkerson, 1998] and later applied to the Southern 317 Ocean [Brzezinski et al., 2001]. It is based on several assumptions, including that bSiO₂ 318 dissolution in surface waters is negligible [Dugdale et al., 1995]. Our results clearly contradict 319 this assumption at the EqPac site [Dugdale and Wilkerson, 1998]. EqPac is the site with the 320 shallowest recycling in our model output (Fig. 1), as observed previously in the field [Blain et 321 al., 1999]. The EqPac site is well-known for its low export efficiency [Buesseler, 1998], possibly 322 related to its small seasonal variability (Table 2, Fig. 3). Consequently, the fraction of bSiO₂ 323 production incorporated into large particles by aggregation/ fecal pellet production is lowest at 324 the EqPac site on an annual basis (Table 2). Our results (Table 4) suggest that the vast majority 325 of the diatoms remain as single cells in surface waters, and 88% dissolve before reaching the 326 base of the mixed layer (on average, 50 m). This extensive dissolution is consistent with the high 327 temperatures (i.e., high dissolution rate) and bacterial activity (i.e., fast removal of protective 328 organic coatings) encountered in these equatorial waters [Bidle et al., 2002]. It is important to 329 note that these are annual fluxes. Episodic events such as Tropical Instability Waves have been 330 shown to trigger intense diatom concentrations at fronts [Yoder et al., 1994], leading to massive 331 sinking of algal material and the formation of large flocs of phytodetritus on the seafloor [Smith 332 et al., 1996]. However, although these episodes may be very important for sustaining life in the 333 mesopelagic and at the sediment-water interface [Smith et al., 2002; Smith Jr et al., 2002], or for 334 formation of paleoceanographic records [Ragueneau et al., 2000], our results suggest that they 335 do not contribute appreciably to annual POC and bSiO₂ fluxes in oligotrophic ecosystems.

Brzezinski et al. [2003] have suggested that a measure of the strength of the silicate pump can be obtained by comparing $1-\int D:\int P$ for Si with the f-ratio for N (representing export intensity for Si and N respectively). When the $1-\int D:\int P$ values obtained from our model are plotted versus the f-ratio for each site (obtained from *Nelson et al.* [2002] for the Southern Ocean and from *Falkowski et al.* [2003] for the other sites) (Fig. 4), the silica pump appears to be most pronounced at APFP and NACC sites. At the EqPac site, $1-\int D: \int P$ is close to 0.12, whereas the fratio is between 0.1 and 0.17 [*Dugdale et al.*, 1992; *Mc Carthy et al.*, 1996]. Since $1-\int D: \int P$ is less than or equal to the f-ratio at this site, it would appear that the silicate pump is weak or nonexistent.

345 The silicate pump will be most pronounced under the following two conditions: (1) when 346 particle formation is extensive enough to induce rapid export from the mixed layer, and (2) when 347 Si and N cycling are decoupled, so that more Si is exported relative to N. To simplify the model 348 as much as possible, we pooled aggregates and fecal pellets into a single group to reconstruct 349 bSiO₂ fluxes. This simplification may lead to some inaccuracies, as grazing (i.e., fecal pellet 350 production) and aggregation can have very different effects on the silicate pump [see Ragueneau 351 et al., 2006]. While grazers assimilate C and N from diatom material, bSiO₂ passes through the 352 gut quasi-inertly, leading to a five-fold increase in the Si/C ratio as the material is egested 353 [Cowie and Hedges, 1996; Tande and Slagstad, 1985]. By contrast, diatoms that are incorporated 354 within aggregates rather than ingested by zooplankton would tend to remain alive for a longer 355 time, fixing their Si/C ratio at a relatively constant value [Moriceau et al., 2007]. Despite this 356 caveat, with our simple model we can at least identify sites with a high flux of fast-sinking particles, and see that 1-JD:JP (at 100 m) is highest at sites with the most seasonality (Fig. 3). 357 358 Clearly, particle formation at the end of blooms is a key factor controlling the silicate pump. 359 Further investigation of aggregation dynamics is crucial for understanding temporal and spatial 360 variations in the strength of the silicate pump, as well as the role of diatoms in the biological 361 carbon pump [e.g., Ragueneau et al., 2006].

362

363 **4.3. Impact on the geochemistry of the seafloor**

Our results have important implications for the calibration of bSiO₂ mass accumulation 364 365 rates (MAR) as a proxy of paleoproductivity [Ragueneau et al., 2000]. Larger opal MAR need 366 not necessarily be ascribed to higher surface productivity. At the POOZ site (Fig. 2), for 367 example, a doubling in the bSiO₂ rain rate can be achieved without any change in surface bSiO₂ 368 production, through either (1) a doubling in the incorporation of bSiO₂ into large particles (i.e., 369 from 20% to 40%), (2) a 3.33-fold increase in the LP sinking rate (from 30 to 100 m d^{-1}), or (3) a 370 2.67-fold decrease in the LP dissolution rate from 0.04 to 0.015 d⁻¹. These ranges in values are 371 all realistic, and a small variation in one of them can significantly increase the amount of bSiO₂ 372 reaching the seafloor. Furthermore, these 3 factors are not necessarily independent and can 373 therefore have additive effects. For example, incorporation into large particles would most likely 374 increase both the particle sinking rate and decrease the bSiO₂ dissolution rate [Moriceau et al., 375 2007]. Clearly, improving our understanding of how siliceous sediments accumulate requires proper consideration of particle formation and biogeochemical cycling in sinking particles. This 376 377 is crucial not only for determining the depth of bSiO₂ dissolution in the water column, but also 378 the extent of silica burial in sediments [Gallinari et al., 2002; Khalil et al., 2007].

379

380 5. Conclusions and perspectives

381 In this paper, we have combined sinking and silica dissolution rates [Schultes, 2004; 382 Moriceau et al., 2007] for three types of siliceous particles (diatoms as free cells, incorporated 383 into zooplankton fecal pellets, or into aggregates) to reconstruct theoretical downward profiles of 384 bSiO₂ fluxes. By applying a simple advection-reaction model to 8 sites of the world ocean where 385 annual estimates of bSiO₂ production are available [Ragueneau et al., 2002], we were able to fit 386 these theoretical profiles to measured bSiO₂ fluxes derived from sediment trap data. Such an 387 approach allowed us to derive the sinking rates of particles and partitioning of bSiO₂ between 388 freely-suspended diatoms and large particles. When diatoms are incorporated into large particles

via aggregation or incorporation into fecal pellets, this can impact bSiO₂ recycling and possibly
other elements like C and N. Further experimentation would be needed, however, to assess this
last point.

The competition between recycling in surface waters and export to depth is controlled by the intensity of particle formation rather than by the extent of dissolution in surface waters. For bSiO₂ incorporated into sinking aggregates and fecal pellets, export is much faster than dissolution. Therefore, the extent of dissolution in surface waters depends primarily on the amount of diatom cells that remain freely suspended and can subsequently be degraded by bacteria [*Bidle and Azam*, 1999]. Thus, even ballasted by its frustule, a diatom would be recycled if not incorporated into fast-sinking aggregates or fecal pellets.

This finding also has implications for the use of opal MAR as a proxy of paleoproductivity, which should account not only for the production signal, but also the extent of incorporation into large particles. Furthermore, just as bSiO₂ preservation depends on the types of particles transporting diatoms toward the seafloor, it likely affects C preservation as well. Further investigation is needed of the extent of C recycling within aggregates and fecal pellets, as this has major implications for C export and benthic food webs.

405 Our model demonstrated that dissolution in surface waters is extremely high at the EqPac 406 site, most likely due to the small percentage of bSiO₂ production being incorporated, on an 407 annual basis, into large sinking particles (Table 2). This result does not support the idea of a 408 strong silicate pump in the equatorial Pacific, as previously suggested by Dugdale et al. [1995]. 409 Rather, it appears that such a mechanism would be most applicable at highly seasonal sites like 410 NACC or APFP where the fraction of bSiO₂ production that is exported from the surface layer is 411 highest (Fig. 3). At such locations, the efficiency of the silica pump will depend upon the relative 412 fates of Si and N in sinking particles. Since aggregation and incorporation into fecal pellets may 413 have very distinct influences on Si and N decoupling during sinking [Ragueneau et al., 2006], 414 differentiating between these two transport pathways is essential for improving our

415	understanding of the	functioning of the	silicate pump,	the role of diatoms	in the biological pump,
-----	----------------------	--------------------	----------------	---------------------	-------------------------

416 and the nutritional properties of particles supporting deep-sea food webs.

- .___

425 Acknowledgements. We are grateful to Monique Briand for her technical assistance with 426 graphics. Thanks to Sorcha Ni Longphuirt, Cindy Lee and Lynn Abramson who kindly 427 commented on this paper and corrected it from the English mistakes. The authors 428 acknowledge NODC (Levitus) World Ocean Atlas 1998 for their data provided by the 429 NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, USA, from their Web site 430 at http://www.cdc.noaa.gov/. This work has been funded by the EU which is greatly 431 acknowledged, partly through the ORFOIS (EVK2-CT2001-00100) project and partly through the Si-WEBS (HPRN-CT-2002-00218) Research Training network of the Marie 432 433 Curie program. This is contribution # xxx of the IUEM.

- 434 References
- 435 Alldredge, A. L. and C. Gotschalk (1988), In situ settling behaviour of marine snow, Limnol
- 436 *Oceanogr, 33* (3), 339-351.
- 437 Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo and S. G. Wakeham (2002), A new,
- 438 mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of
- 439 POC with ballast minerals, *Deep-Sea Res Part II*, 49, 219-236.
- 440 Aumont, O., E. Maier-Reimer, S. Blain and P. Monfrey (2003), An ecosystem model of the
- 441 global ocean including Fe, Si, P colimitations, *Global Biogeochem Cycles*, 17, 1-26.
- 442 Berger, W. H. and G. Wefer (1990), Export production: seasonality and intermittency, and
- 443 paleoceanographic implications, *Palaeogeogr Palaeoclimatol Palaeoecol*, 89, 245-254.
- 444 Bidle, K. D. and F. Azam (1999), Accelerated dissolution of diatom silica by marine bacterial
- 445 assemblages, *Nature*, *3*97, 508-512.
- 446 Bidle, K. D., M. Manganelli and F. Azam (2002), Regulation of Oceanic Silicon and Carbon
- 447 Preservation by Temperature Control on bacteria, *Science*, 298, 1980-1984.
- 448 Bienfang, P. K. (1981), Sinking rate of heterogeneous, temperate phytoplankton populations, *J*
- 449 *Plankton Res*, 3 (2), 235-253.
- 450 Blain, S., P. Tréguer and M. Rodier (1999), Stocks and fluxes of biogenic silica in the western
- 451 oligotrophic equatorial Pacific, J Geophys Res, 104, 3357-3367.
- 452 Brzezinski, M. A., D. M. Nelson, V. M. Franck and D. E. Sigmon (2001), Silicon dynamics
- 453 within an intense open-ocean diatom bloom in the Pacific Sector of the Southern Ocean, Deep-
- 454 Sea Res, 48, 3997-4018.
- 455 Brzezinski, M. A., J. L. Jones, K. D. Bidle and F. Azam (2003), The balance between silica
- 456 production and silica dissolution in the sea: Insights from Monterey Bay, California, applied to
- 457 the global data set, *Limnol Oceanogr*, 48 (5), 1846-1854.
- 458 Buesseler, K. O. (1998), The decoupling of production and particulate export in the surface
- 459 ocean, Global Biogeochem Cycles, 12, 297-310.

- 460 Cowie, G. L. and J. I. Hedges (1996), Digestion and alteration of the biochemical constituents of
- 461 a diatom (*Thalassiosira weissflogii*) ingested by an herbivorious copepod (*Calanus pacificus*),
- 462 *Limnol Oceanogr, 41, 581-594.*
- 463 Cushing, D. H. (1989), A difference in structure between ecosystems in strongly stratified waters
- and in those that are only weakly stratified, *J Plankton Res*, 11, 1-13.
- 465 Dugdale, R. C., F. P. Wilkerson, R. T. Barber and F. P. Chavez (1992), Estimating new
- 466 production in the equatorial Pacific Ocean at 150°W, J Geophys Res, 97 (C1), 681-686.
- 467 Dugdale, R. C., F. P. Wilkerson and H. J. Minas (1995), The role of a silicate pump in driving
- 468 new production, *Deep-Sea Res Part I*, 42, 697-719.
- 469 Dugdale, R. C. and F. P. Wilkerson (1998), Silicate regulation of new production in the
- 470 equatorial Pacific upwelling, *Nature*, *391*, 270-273.
- 471 Falkowski, P. G., E. A. Laws, R. T. Barber, and J. W. Murray (2003), Phytoplankton and their
- 472 role in primary, new and export production, in *Ocean Biogeochemistry*, edited by M. J. R.
- 473 Fasham, Berlin, Springer-Verlag.
- 474 Fujii, M. and F. Chai (2005), Effects of biogenic silica dissolution on silicon cycling and export
- 475 production, *Geophys Res Lett*, 32, L05617. doi: 10.1029/2004GL02054.
- 476 Gallinari, M., O. Ragueneau, L. Corrin, D. J. Demaster, and P. Tréguer (2002) The importance
- 477 of water column processes on the dissolution properties of biogenic silica in deep sea-sediments
- 478 I. Solubility, *Geochim Cosmochim Acta*, 66, 2701-2717.
- 479 Greenwood, J., V. W. Truesdale and A. R. Rendell (2001), Biogenic silica dissolution in
- 480 seawater in vitro chemical kinetics, *Prog Oceanogr, 48*, 1-23.
- 481 Kemp A. E. S., J. Pike, R. B. Pearce, and C. B. Lange (2000), The "Fall dump" a new
- 482 perspective on the role of a "shade flora" in the annual cycle of diatom production and export
- 483 flux, Deep-Sea Res Part I, 47, 2129-2154.
- 484 Kemp, A. E. S., R. B. Pearce, I. Grigorov, J. Rance, C. B. Lange, P. Quilty, and I. Salter (2006),
- 485 The production of giant marine diatoms and their export at oceanic frontal zones: implications

- 486 for Si and C flux in stratified oceans, *Global Biogeochem Cycles*, 20.
- 487 doi:10.1029/2006GB002698.
- 488 Khalil, K., C. Rabouille, M. Gallinari, and O. Ragueneau (2007), Constraining biogenic silica
- 489 dissolution in marine sediments: a comparison between diagenetic models and experimental
- 490 dissolution rates, *Mar Chem*, in press. doi:10.1016/j.marchem.2006.12.004.
- 491 Klaas, C. and D. E. Archer (2002), Association of sinking organic matter with various types of
- 492 mineral ballast in the deep sea: Implications for the rain ratio, Global Biogeochem Cycles, 16 (4),
- 493 116, doi:10.1029/2001GB001765.
- 494 Lampitt, R. S., K. Kiriakoulakis, O. Ragueneau, A. Vangriesheim and G. Wolff (2001), Material
- 495 supply to the abyssal seafloor in the Northeast Atlantic, *Prog Oceanogr*, 50 (1-4), 27-63.
- 496 Lawson, S. D., D. C. Hurd and H. Stuart Pankratz (1978), Silica dissolution rates of
- decomposing phytoplankton assemblages at various temperature, Am J Sci, 278, 1373-1393.
- 498 Leynaert, A., P. Tréguer, C. Lancelot and M. Rodier (2001), Silicon limitation of biogenic silica
- 499 production in the Equatorial Pacific, *Deep-Sea Res Part I*, 48, 639-660.
- 500 Mann, K. H. and J. R. N. Lazier (Eds) (1996), Dynamics of Marine Ecosystems: Biological-
- 501 *Physical Interactions in the Oceans*, 394 pp., Blackwell Science.
- 502 McCarthy, J. J., C. Garside, J. L. Nevins, R. T. Barber and J. W. Murray (1996), New production
- so3 along the 140°W in the equatorial Pacific during and following the 1992 El Nino event, Deep-
- 504 Sea Res Part II, 43 (4-6), 1065-1093.
- 505 Moriceau, B., M. Garvey, U. Passow and O. Ragueneau (2007), Evidence for reduced biogenic
- silica dissolution rates in diatom aggregates, *Mar Ecol Prog Ser*, 333, 129-142.
- 507 Nelson, D. M., P. Tréguer, M. A. Brzezinski, A. Leynaert and B. Quéguiner (1995), Production
- and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with
- 509 regional data and relationship to biogenic sedimentation, Global Biogeochem Cycles, 9 (3), 359-
- 510 372.

- 511 Nelson, D. M., R. F. Anderson, R. T. Barber, M. A. Brzezinski, K. Buesseler, Z. Chase, R. W.
- 512 Collier, M. -L. Dickson, R. François, M. R. Hiscock, S. Honjo, J. Marra, W. R. Martin, R. N.
- 513 Sambrotto, F. L. Sayles, and D. E. Sigmon (2002), Vertical budgets for organic carbon and
- 514 biogenic silica in the pacific sector of the Southern Ocean, 1996-1998, Deep-Sea Res II, 49,
- 515 1645-1674.
- 516 Officer, C. B. and J. H. Ryther (1980), The possible importance of silicon in marine
- 517 eutrophication, *Mar Ecol Prog Ser*, *3*, 83-91.
- 518 Passow, U. (2004), Switching perspectives: Do mineral fluxes determine particulate organic
- 519 carbon fluxes or vice versa? Geochemistry Geophysics Geosystems, 5 (4), 1-5.
- 520 doi:10.1029/2003GC000670.
- 521 Pondaven, P., C. Fravalo, D. Ruiz-Pino, P. Tréguer, B. Quéguiner and C. Jeandel (1998),
- Modelling the silica pump in the Permanently Open Ocean Zone of the Southern Ocean, *J Mar Syst*, *17*, 587-619.
- 524 Ragueneau, O., P. Tréguer, A. Leynaert, R. F. Anderson, M. A. Brzezinski, D. J. Demaster, R. C.
- 525 Dugdale, J. Dymond, G. Fischer, R. François, C. Heinze, E. Maier-Reimer, V. Martin-Jézéquel,
- 526 D. M. Nelson and B. Quéguiner (2000), A review of the Si cycle in the modern ocean: recent
- 527 progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy,
- 528 *Global Planet Change*, 26, 317-365.
- 529 Ragueneau, O., N. Dittert, P. Pondaven, P. Tréguer and L. Corrin (2002), Si/C decoupling in the
- 530 world ocean: is the Southern Ocean different? *Deep-Sea Res Part II*, 49, 3127-3154.
- 531 Ragueneau, O., S. Schultes, K. Bidle, P. Claquin, et B. Moriceau, (2006), Si and C interactions
- 532 in the world ocean: importance of ecological processes and implications for the role of diatoms
- 533 in the biological pump, *Global Biogeochem Cycles*, 20, doi:1029/2006GB002688.
- 534 Rickert, D., M. Schlüter and K. Wallmann (2002), Dissolution Kinetics of biogenic silica from
- the water column to the sediments, *Geochim Cosmochim Acta*, 66 (3), 439-455.

- 536 Ridgwell, A. J., A. J. Watson and D. E. Archer (2002), Modeling the response on the oceanic Si
- inventory to perturbation, and consequences for atmospheric CO2, *Global Biogeochem Cycles*, *16* (4), 1071.
- 539 Rinaldi, A., R. A. Vollenweider, G. Montanari, C. R. Ferrari and A. Ghetti (1995), Mucilages in
- 540 italian seas: the Adriatic and Thyrrhenian Seas, 1988-1991, The Science of the Total
- 541 Environment, 165, 165-183.
- 542 Sarmiento, J. L., J. Dunne and R. A. Armstrong (2004), Do We Now Understand The Ocean's
- 543 Biological Pump? U.S. JGOFS Newsletter, 12 (4), 1-5.
- 544 Schultes, S. (2004), The role of mesozooplankton grazing in the biogeochemical cycle of silicon
- 545 in the Southern Ocean, Ph. D., 168 pp., Universität Bremen, Bremen.
- 546 Smayda, T. J. (1970), The sinking and suspension of phytoplankton in the sea, Oceanogr Mar
- 547 Biol Annu Rev, 8, 353-414.
- 548 Smetacek, V. (1999), Diatoms and the Ocean Carbon Cycle, *Protist*, 150, 25-32.
- 549 Smith, C. R., D. J. Hoover, S. E. Doan, R. H. Pope, D. J. Demaster, F. C. Dobbs and M. A.
- 550 Altabet (1996), Phytodetritus at the abyssal seafloor across 10° of latitude in the central
- 551 equatorial Pacific, *Deep-Sea Res Part II*, 43, 1309-1338.
- 552 Smith, C. R., S. L. Minks, A. G. Glover, D. J. Demaster and P. Y. Sumida (2002),
- 553 FOODBANCS on the Antarctic Peninsula Shelf: the benthic food bank hypothesis and the
- seasonal deposition pulse., *EOS Trans Am Geophys Union*, 83 (4), 223.
- 555 Smith Jr, K. L., R. J. Baldwin, D. M. Karl and A. Boetius (2002), Benthic community responses
- to pulses in pelagic food supply: North Pacific subtropical Gyre, Deep-Sea Res Part I, 49, 971-
- 557 990.
- 558 Tande, K. S. and D. Slagstad (1985), Assimilation efficiency in herbivorous aquatic organisms-
- the potential of the ratio method using 14 C and biogenic silica as markers, *Limnol Oceanogr*, 30,
- 560 1093-1090.

- 561 Thornton, D. C. O. (2002), Diatom aggregation in the sea: mechanisms and ecological
- 562 implications, Eur J Phycol, 37, 149-161.
- 563 Tréguer, P., D. M. Nelson, A. J. V. Bennekom, D. J. Demaster, A. Leynaert and B. Quéguiner
- 564 (1995), The silica Balance in the World Ocean: A Reestimate, *Science*, 268, 375-379.
- 565 Turner, J. T. (2002), Zooplankton faecal pellets, marine snow and sinking phytoplankton
- 566 blooms, Aquat Microb Ecol, 27, 57-102.
- 567 Van Cappellen, P., S. Dixit and J. Van Beusekom (2002), Biogenic silica dissolution in the
- 568 oceans: Reconciling experimental and field-based dissolution rates, *Global Biogeochem Cycles*,
- 569 16 (4), 1075, doi:10.1029/2001 GB001431.
- 570 Wassmann, P., L. Hansen, I. J. Andreassen, C. W. Riser and J. Urban-Rich (1999), Distribution
- and sedimentation of faecal pellets on the Nordvestbanken shelf, northern Norway, in 1994,
- 572 Sarsia, 84, 239-252.
- 573 Yoder, J. A., S. G. Ackelson, R. T. Barber, P. Flamant, and W. M. Balch (1994), A line in the
- 574 sea, *Nature*, *371*, 689-692.

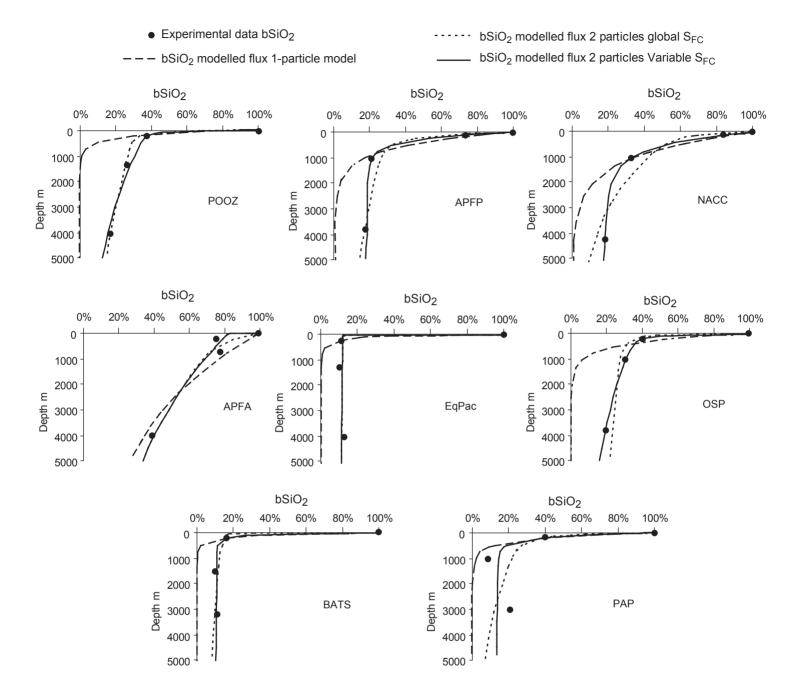
Figure caption

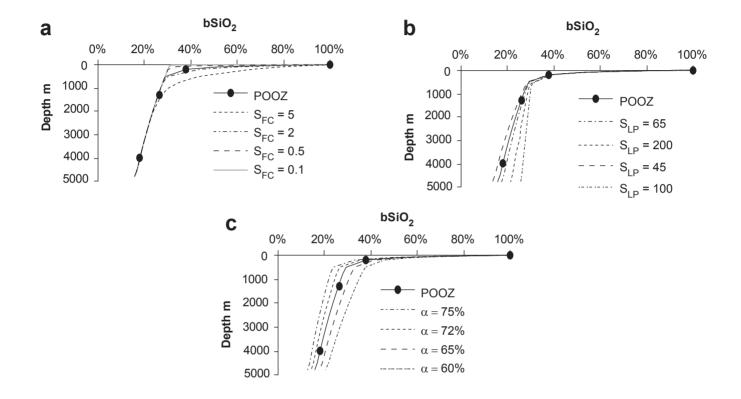
- Figure 1: Best fits (lines) of the three versions of the models and in situ (dots) $bSiO_2$ flux profiles, for eight sites in the global ocean described in *Ragueneau et al.* [2002] (positions given in Table 2). The dashed lines are the fits obtained from the 1-particle model, the dotted lines describe the $bSiO_2$ fluxes calculated with the 2-particle model that uses a global S_{FC} and the plain lines depict the $bSiO_2$ profiles obtained from the 2-particle model that uses a variable S_{FC} calculated at each site.
- Figure 2: Sensitivity of the model, represented by successive variation of parameters. Fig. 2a sensitivity of the model to the sinking rate of the slow sinking/fast dissolving particle S_{FC} , with S_{LP} set at 51 m d⁻¹ and α at 68%, Fig. 2b, sensitivity of the model to the sinking rate of the fast sinking/slow dissolving particle S_{LP} , with S_{FC} set at 1.4 m d⁻¹ and α at 68%, Fig. 2c, sensitivity of the model to the repartition of the bSiO₂ between the FC group α , and the LP group (1- α), with S_{LP} set at 51 m d⁻¹ and S_{FC} at 1.4 m d⁻¹. The graphs represent the results of the test for the POOZ site, the full circles and the full lines in each graph represent the in situ measurements of the bSiO₂ fluxes and the results of the model 3.
- Figure 3: Importance of the seasonality. 1-JD:JP at 100 m calculated from the model outputs as a function of the seasonality index [*Berger and Wefer* 1990]. The site names are given near each corresponding point.
- Figure 4: 1-∫D:∫P calculated at 100 m with the model 3 versus the f-ratios. The f-ratios are from *Nelson et al.* [2002] for the Southern Ocean and *Falkowski et al.* [2003] for the other sites. The names of seven of the eight sites are indicated near the corresponding point. APFA site is not in the graph as no f-ratio is available at this site. The plain line delimits the zones where f-ratio is higher or lower than 1-∫D:∫P at 100 m which gives an indication of the strength of the silica pump.

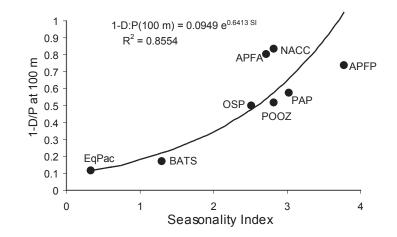
		sinking rate m d ⁻¹			
range References		range	References	Used in this study	
Cells	0.2-20	Bienfang, 1981; Mann and Lazier, 1996; Smayda, 1970; Turner, 2002]	0.005-1.3	[Van Cappellen et al., 2002]	0.044
Aggregates	1-370	[Alldredge and Gotschalk, 1988; Ridgwell et al., 2002]	0.012-0.056	[Moriceau et al., 2007]	
Copepod fecal pellets	5-220	[Turner, 2002; Wassmann et al., 1999]	0.003-0.027	[Gallinari et al.,unpubl.; Schultes, 2004]	0.022

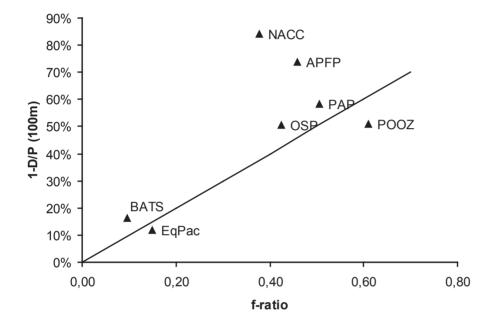
Table 1: Range of sinking rates and specific dissolution rates cited in the literature for freely suspended cells, aggregates and copepods fecal pellets. The column "Used in this study", gives the dissolution values actually used herein. For the slow sinking/fast dissolving group (FC), we used the mean value given by *Van Cappellen et al.* [2002] from a compilation of studies, whereas for the LP (aggregates + fecal pellets) the rates are calculated from the average value given by *Van Cappellen et al.* [2002] divided by the factor of two which is the average decrease in dissolution rates observed when cells are incorporated into fecal pellets and aggregates [*Gallinari et al.*, unpubl; *Schultes*, 2004; *Moriceau et al.*, 2007].

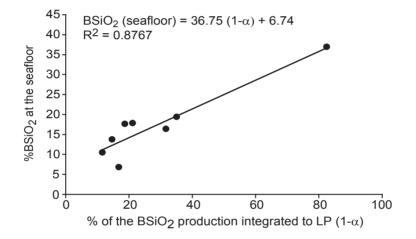
		POOZ	APFP	NACC	APFA	OSP	EqPac	BATS	PAP
Latitude		-52	-60	-56.9	-50.1	50	1	28	48.8
Longitude		62	-170	-170.1	5.8	-145	-139	-67.5	-16.5
MM	LD (m)	259	235	390	180	100	48	100	576
	SI	2.80	3.75	2.80	2.70	2.50	0.33	1.30	3.00
	% PP _{bSiO2} in FC stage α	80%	70%	40%	20%	69%	88%	83%	65%
Model 2: 2-particle	$S_{FC}(m d^{-1})$				2.76				
model global S _{FC}	% PP _{bSiO2} into LP (1- α)	20%	30%	60%	80%	31%	12%	17%	35%
	$S_{LP} (m d^{-1})$	470	53	27	47	90	812	92	55
	% PP _{bSiO2} in FC stage α	68%	81%	78%	17%	64%	88%	83%	85%
Model 3: 2-particle	S_{FC} (m d ⁻¹)	1.4	4.5	10.3	0.1	2	0.1	0.1	6.7
model variable S _{FC}	% PP _{bSiO2} into LP (1- α)	32%	19%	22%	83%	36%	12%	17%	15%
	$S_{LP} (m d^{-1})$	51	452	242	45	62	500	90	605


Table 2: Environmental characteristics and results of the two versions of the 2-particle model calculated to fit the $bSiO_2$ flux profiles at eight sites of the global ocean (Fig. 1). The depth of the maximum mixed layer (MMLD) and the location of the sites are from *Ragueneau et al.* [2002]. The seasonality indexes (SI) are calculated following the work of *Berger and Wefer* [1990]. The last rows depict combinations of sinking rates for FC (S_{FC}) and LP (S_{LP}) and percentage of $bSiO_2$ incorporated into the two groups of particles calculated with each version of the 2-particle model from the best fits.


		POOZ	APFP	NACC	APFA	OSP	EqPac	BATS	PAP
residence time of FC in	Considering only sinking	0.7	0.2	0.1	10	0.5	10	10	0.15
surface layer	Considering dissolution	56	56	43	60	36	8	8	21
residence time	Considering only sinking	0.020	0.002	0.004	0.022	0.016	0.002	0.011	0.002
of LP in surface layer	Considering dissolution	113	113	86	121	71	15	17	42


Table 3: Residence times of the particles in the mixing layer (ML) in days calculated considering only dissolution processes and considering only sedimentation rates at the eight sites. To calculate the residence time of the particles considering only sinking processes, the sinking rates are normalized by the depth of the mixed layer (MLD) as given Table 2. The residence times of the particles in the mixed layer considering only dissolution processes are equal to 1/k(T), with k(T) the specific dissolution rates corrected for temperature at each site.


	POOZ	APFP	NACC	APFA	OSP	EqPac	BATS	PAP
% PP _{bSiO2} reaching the MMLD	34%	53%	58%	80%	50%	12%	16%	18%
% PP _{bSiO2} on FC stage at the MMLD	4%	34%	36%	0%	16%	0%	0%	3%
% PP _{bSiO2} reaching the seafloor	17%	18%	18%	37%	19%	11%	7%	14%


Table 4: $bSiO_2$ fluxes of the eight sites at the maximum mixed layer depth (MMLD) (see also Table 2), in terms of % of total $bSiO_2$ production at the surface layer (PP_{bSiO_2}), contribution of the slow sinking/fast dissolving group (FC) to the % of PP_{bSiO_2} that reaches this depth, and % of PP_{bSiO_2} that sinks down to the seafloor.

