Pertinent parameters for Kautz approximation
Riwal Morvan, Noël Tanguy, Pierre Vilbé, Léon-Claude Calvez

To cite this version:
Pertinent parameters for Kautz approximation

Abstract

A procedure for determining two parameters to be used in Kautz approximation is presented. It is based on minimisation of an upper bound of the error energy.

Index terms: Orthonormal approximation, Signal representation, Modelling, Mathematical techniques.

Introduction:

Poorly damped systems are difficult to approximate with a reasonable number of Laguerre functions, so the so-called two-parameter Kautz functions which can approximate more efficiently signals with strong oscillatory behavior, have received much attention in the recent mathematical modelling and identification literature (see, e.g., [1] and the references therein). These functions can be defined by their Laplace transforms

\[
\hat{\varphi}_{2k}(s) = \frac{\sqrt{2bc}}{s^2 + bs + c} \left(\frac{s^2 - bs + c}{s^2 + bs + c} \right)^k
\]

\[
\hat{\varphi}_{2k+1}(s) = \frac{s\sqrt{2bc}}{s^2 + bs + c} \left(\frac{s^2 - bs + c}{s^2 + bs + c} \right)^k
\]

where the numbering of the functions as defined in [1] has been slightly modified for suitability. The time functions \(\varphi_n(t) \) or as \(\varphi_n(t, b, c) \) whenever it is desirable to exhibit the parameters. The orthonormal set \(\{ \varphi_n \} \) is complete in \(L^2[0, \infty] \), thus any finite energy real causal signal \(f(t) \) can be approximated by truncating its infinite expansion \(f(t) = \sum_{n=0}^{\infty} a_n \varphi_n(t) \) where \(a_n = \langle f, \varphi_n \rangle \) is the \(n+1 \) th Fourier coefficient. The \(N \)-term truncated expansion yields the best approximation to \(f(t) \) of the form \(\tilde{f}(t) = \sum_{n=0}^{N-1} a_n \varphi_n(t) \) in the sense of minimising the integrated squared error (ISE)

\[
Q = \int_0^{\infty} \left[f(t) - \tilde{f}(t) \right]^2 dt = \| f \|^2 - \sum_{n=0}^{N-1} a_n^2 = \sum_{n=N}^{\infty} a_n^2.
\]

Usually, since the \(a_n \) depend on \(b \) and \(c \), \(Q \) can be reduced further by a proper choice of these parameters. Nice optimality conditions for Kautz approximation, generalizing that of the Laguerre case [2, 3], have been derived by Oliveira e Silva [4] and den Brinker [5]. However, these conditions of great theoretical interest can result in complicated computations in practical cases. For Laguerre functions [6, 7] and other classical functions [8, 9] an alternative easy-to-use and efficient approach, based on minimisation of an upper bound of the error energy, has been proposed. It is the purpose of this Letter to derive a somewhat similar procedure for the specific set of non-classical two-parameter Kautz functions.

Key relationship:

Recently [11], it has been shown that the coefficients \(a_n \) can be found from power series calculations in the following manner. Denoting by \(\hat{f}(s) \) the Laplace transform of \(f(t) \), assumed to be analytic outside an appropriate region in the \(s \)-plane, let \(F_i, i = 1, 2 \), be defined by

\[
F_1(s) = \left[s^2 \hat{f}(s) - c \hat{f}(c/s) \right] / (s^2 - c)
\]

\[
F_2(s) = \left[\hat{f}(c/s) - \hat{f}(s) \right] s\sqrt{c} / (s^2 - c).
\]

Since \(F_i(c/s) = F_i(s) \), both these functions are symmetric functions of \(c/s \) and \(s \) and so they can be represented as functions of \((c/s) + s \) and \((c/s) s = c \), whence

\[
F_i(s) = \hat{f}_i(s + c/s, c), \quad i = 1, 2.
\]

1Laboratoire d’Electronique et Systèmes de Télécommunications (LEST), UMR CNRS n° 6616, Université de Bretagne Occidentale (UBO), 29285 BREST cedex, FRANCE {Riwal.Morvan, Noel.Tanguy, Pierre.Vilbe, Leon-Claude.Calvez} @univ-brest.fr
Notice that the transformation \(s \rightarrow s + c/s \) is familiar in filter design where it is used to design a band-pass filter from a low-pass filter. The trick to relate Kautz coefficients and power series is to observe the remarkable relationship

\[
\hat{f}_i(s,c) = \sum_{n=0}^{\infty} a_{2n+2-i} \hat{l}_n(s,b) \quad , \quad i = 1, 2
\]

where \(\hat{l}_n(s,b) = \sqrt{2b} (s-b)^n/(s+b)^{n+1} \) denotes the Laplace transform of the normalised Laguerre function \(l_n(bt) \).

Thus, the Fourier coefficients associated with the expansion of \(f(t) \) with respect to the orthonormal set \(\{\varphi_n\} \) can be obtained via Laguerre expansions.

Proposed procedure for pertinent parameters:

Denoting by \(f_i(t,c) \) the inverse Laplace transform of \(\hat{f}_i(s,c) \), let us define moments \(M_j \) by

\[
M_0 = \int_0^\infty \left[(f_1)^2 + (f_2)^2\right] dt
\]

\[
M_1(c) = \int_0^\infty t \left[(f_1)^2 + (f_2)^2\right] dt
\]

\[
M_2(c) = \int_0^\infty t \left[(d f_1/d t)^2 + (d f_2/d t)^2\right] dt
\]

where we have used \(f_i \) as shorthand for \(f_i(t,c) \). Since the Laguerre functions are orthonormal and the Kautz functions are orthonormal also, both \(M_0 \) and \(\|f\|^2 \) are equal to \(\sum_{n=0}^{\infty} a_n^2 \), hence \(M_0 = \|f\|^2 \) is a constant. On the other hand, \(M_1 \) and \(M_2 \) depend on \(c \) but do not depend on \(b \).

Theorem 1:

Let \(q = Q / \|f\|^2 \), \(m_i(c) = M_i(c) / \|f\|^2 \), \(i = 1, 2 \). Then, the normalised ISE associated with a \(2K \)-term Kautz approximation is bounded by

\[
q \leq B = \frac{1}{2K} \left[2 m_1(b) + bm_1(c) - 1 \right].
\]

This bound attains its minimum when \(b = \sqrt{m_2(c)/m_1(c)} \). The minimum itself is \(B_{min} = \left(2 \sqrt{m_1(c) m_2(c) - 1} \right) / (2K) \).

Proof:

Let \(M_j = M_{j1} + M_{j2} \) where \(M_{ji} \) denotes the contribution of \(f_i \) \((M_0 = \int_0^\infty (f_1)^2 dt, ...\)\). Then, the ISE \(Q_i = \sum_{n=K}^{\infty} a_{2n+2-i} \) associated with the \(K \)-term Laguerre approximation of \(f_i(t,c) \) (see eqn. 5) is known \([6]\) to be bounded by \((M_{i2}/b + M_{i1}b - M_{i0})/(2K)\), provided that \((2K+1) \geq (M_{i1}/b + M_{i2})/M_0\), \(i = 1, 2 \), a condition which is assumed to hold in the following (\(K \) is sufficiently large). In view of eqn. 1 the ISE associated with the \((N = 2K)\)-term Kautz approximation of \(f(t) \) is \(Q = Q_1 + Q_2 \) and can then be bounded as \(Q \leq (M_2/b + M_1b - M_0)/(2K) \). Dividing throughout by \(\|f\|^2 \) gives \(M_0 \) achieves the proof of eqn. 9. Writing \(\partial B/\partial b = 0 \), the last part of the theorem follows readily.

For a fixed \(c > 0 \), let \(C = C(c; m_1, m_2) \) denote the class of signals \(f \in L^2[0,\infty] \) with given \(m_1(c) = m_1 \) and \(m_2(c) = m_2 \). There exist signals \(f \in C \) that achieve the bound in eqn. 9; as a simple example, consider \(C(5; 0.4, 1.6) \); it is a standard exercise to show that \(f(t) = 3\varphi_0(t,2.5) + \varphi_0(t,2.5) \) is in this class. Clearly, the \(6 \)-term Kautz approximation using \(\varphi_n(t,2.5) \) is \(\tilde{f}(t) = 3\varphi_0(t,2.5) \) with \(q = 0.1 \) and \(B = (1.6/2 + 2 \times 0.4 - 1)/6 = 0.1 \), whence \(q = B \). Therefore, the bound in eqn. 9 is actually the maximum ISE for signals in \(C \) and theorem 1 gives the best \(b \) in the sense of minimising the maximum integrated squared error, that can be obtained with the knowledge of the signal limited to \(m_1(c) \) and \(m_2(c) \).

Now, suppose that \(m_1(c) \) and \(m_2(c) \) are known for more than one value of \(c \), say for \(c \in C \) where \(C \) represents a discrete or continuous set of positive numbers. Since the lowest \(m_1(c) \) \(m_2(c) \) will result in the lowest \(B_{min} \), we have the following theorem.

Theorem 2:

Let \(c_0 \) denote that value of \(c \in C \) at which the product \(m_1(c) m_2(c) \) is minimum and let \(b_0 = \sqrt{m_2(c_0)/m_1(c_0)} \). Then, a pertinent choice for the pair of Kautz parameters is \((b_0, c_0)\), which yields \((B_{min})_0 = \left(2 \sqrt{m_1(c_0) m_2(c_0) - 1} \right) / (2K) \).

Remark:

Notice that \(b_0 \) and \(c_0 \) do not depend on the number \(N = 2K \) of functions to be used. Thus \(b_0 \) and \(c_0 \) can be computed in a first time and \(N \) can be chosen afterwards: for instance, one can choose \(N \) such that the upper bound \((B_{min})_0 \) is small enough or such that the exact \(q = 1 - \sum_{n=0}^{N-1} a_n^2 / \|f\|^2 \) is small enough.
Illustrative example:
Consider the Laplace transform
\[\hat{f}(s) = \frac{s^3 + 4s^2 + 8s + 1}{s^4 + 5s^3 + 13s^2 + 19s + 18} \]
with a view to deriving a second-order approximation \((N = 2\) Kautz functions). Letting for example \(c = 4\), eqns. 2-4 yield
\[\hat{f}_1(s, 4) = \frac{9s^3 + 72s^2 + 182s + 127}{9s^4 + 83s^3 + 267s^2 + 349s + 164} \]
\[\hat{f}_2(s, 4) = \frac{s^3 + 19s^2 + 81s + 87}{9s^4 + 83s^3 + 267s^2 + 349s + 164} \]
Using one of the available techniques (e.g. \([10]\)), the required moments are computed as \(M_0 = \|f\|^2 = 0.5183, M_1(4) = 0.2531, M_2(4) = 0.3278\) and the error bound is minimised when \(b = \sqrt{M_2(4)/M_1(4)} = \sqrt{M_2(4)/M_1(4)} = 1.138\).

With \(b = 1.138\) and \(c = 4\), the first and second coefficients of the Kautz expansion are \(a_0 = 0.2965\) and \(a_1 = 0.6365\) from which the exact normalised ISE is obtained as \(q = 4.878 \times 10^{-2}\).

The normalised moments computed by repeating the procedure for \(c = 2\) and \(c = 3\) are shown in Table 1. For \(c \in \{2, 3, 4\}\), the product \(m_1(c) m_2(c)\) is minimum if \(c = 3\); therefore, in agreement with theorem 2, we select \(b_0 = \sqrt{0.4980/0.5138} = 0.9846\) and \(b_0 = 3\), improving the normalised ISE which becomes \(q = q_i = 2.505 \times 10^{-3}\). It is worth noting that \(q_i\) obtained using limited knowledge of the signal (Table 1) is, for this example, very close to the best possible value \(q_{opt} = 2.486 \times 10^{-3}\) that can be achieved with complete knowledge of the signal.

<table>
<thead>
<tr>
<th>(c)</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_1(c))</td>
<td>0.5329</td>
<td>0.5138</td>
<td>0.4883</td>
</tr>
<tr>
<td>(m_2(c))</td>
<td>0.6747</td>
<td>0.4980</td>
<td>0.6325</td>
</tr>
<tr>
<td>(m_1(c) m_2(c))</td>
<td>0.3596</td>
<td>0.2559</td>
<td>0.3088</td>
</tr>
</tbody>
</table>

Table 1: Normalised moments for \(c = 2, 3, 4\)

Conclusion:
A procedure for improving a Kautz approximation, in the case of a limited number of expansion terms, by a proper choice of a pair of free parameters, has been presented. It possesses desirable features and can be readily adapted to the discrete time case. This work is underway.

References