Focal mechanisms, stress field and crustal rheology in the North Tanzanian Divergence (East African Rift) inferred from local seismicity analysis

Julie Albaric, Maxime Godano, Jacques Déverchère, Julie Perrot, Anne Deschamps, Christian Sue, Bernard Le Gall, R.W. Ferdinand, Carole Petit, Christel Tiberi

To cite this version:
Julie Albaric, Maxime Godano, Jacques Déverchère, Julie Perrot, Anne Deschamps, et al.. Focal mechanisms, stress field and crustal rheology in the North Tanzanian Divergence (East African Rift) inferred from local seismicity analysis. Iceland in the Central Northern Atlantic: hotspot, sea currents and climate change, May 2010, Plouzané, France. hal-00482059

HAL Id: hal-00482059
https://hal.univ-brest.fr/hal-00482059
Submitted on 7 May 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Focal mechanisms, stress field and crustal rheology in the North Tanzanian Divergence (East African Rift) inferred from local seismicity analysis

Julie Albaric1, Maxime Godano2, Jacques Déverchère1, Julie Perrot1 Anne Deschamps2, Christian Sue1, Bernard Le Gall1, Richard W. Ferdinand3, Carole Petit4, Christel Tiberi5.

1 CNRS - UMR 6538 – Domaines Océaniques, IUEM-UBO, Plouzané, France
2 CNRS - UMR 6526 – Géoazur, IRD-UNS-OCA, Sophia-Antipolis, France
3 University of Dar Es Salaam, Geology Department, Tanzania
4 CNRS- UMR 7072 – Laboratoire de Tectonique, UPMC, Paris, France
5 CNRS - UMR 5243 – Géosciences Montpellier, UM2, Montpellier, France

We deployed a temporary local seismic network in the North Tanzanian Divergence (NTD) for 6 months in 2007 (35 stations, SEISMOTANZ’07 experiment). The region is characterized by major changes in the magmatic/tectonic nature of the rift, at the place where the eastern branch of the East African Rift enters the Tanzanian craton. More than 200 earthquakes were accurately located south of Lake Manyara (Figure 1, Albaric et al., in press).

They form two main clusters rooted at ca. 20-35 km depth, i.e. significantly deeper than the neighbouring Natron-Gelai seismo-magmatic crisis of July-November 2007 (Calais et al., 2008). This apparently long-lasting seismic activity is surprisingly associated with significant NE-SW strike-slip faulting.

The preliminary stress field determined in Manyara is transtensive, with the minimum principal stress oriented WNW-ESE. From a non-linear inversion method using direct P, SV and SH wave
amplitudes (Simulated Annealing algorithm, Godano et al., 2009), we improve the double-couple focal mechanisms database, preliminarily determined with P wave polarities. The active structures determined depict clear links with the inherited structures of the basement, at the contact of the Tanzanian craton with the Proterozoic belt.

We also model the yield stress envelope of the crust from the depth frequency distribution of earthquakes. The results are consistent with the presence of a mafic lower crust and further support the overall tendency of strength increase of the rifted crust from south Kenya to the NTD (Albaric et al., 2009). It is suspected that deep fluid injections at subcrustal levels may trigger this anomalous activity in the lower crust.

References

