Advancing Cellular Spatiotemporal Monitoring: Machine Learning-Enhanced Multi-Electrode Impedance Spectroscopy - Département de mécanique
Communication Dans Un Congrès Année : 2024

Advancing Cellular Spatiotemporal Monitoring: Machine Learning-Enhanced Multi-Electrode Impedance Spectroscopy

Résumé

Understanding how cells organize in space and time is crucial for organ development, tissue regeneration, and cancer progression [1]. Conventional methods, such as live-cell fluorescence microscopy imaging, face challenges such as dye toxicity and photo-induced cell damage. To overcome these hurdles, we propose a costeffective, label-free solution using a micro-electrode array (MEA) and impedance spectroscopy (IS). This approach allows us to monitor different cell types and is ideal for long-term experiments, co-culture studies, and organ-on-chip applications.
Fichier principal
Vignette du fichier
Abstract_EUROoCS2024_MCY_v2.pdf (178.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04759275 , version 1 (29-10-2024)

Identifiants

  • HAL Id : hal-04759275 , version 1

Citer

Manuel Carrasco, Gor Lebdev, Jean Gamby, Abdul I Barakat. Advancing Cellular Spatiotemporal Monitoring: Machine Learning-Enhanced Multi-Electrode Impedance Spectroscopy. EUROoCs Annual Conference 2024, Jul 2024, Milan (Italie), Italy. ⟨hal-04759275⟩
17 Consultations
6 Téléchargements

Partager

More