ON RELATIVE INTEGRAL MONODROMY OF ABELIAN LOGARITHMS AND NORMAL FUNCTIONS - Faculté des Sciences de Sorbonne Université
Pré-Publication, Document De Travail Année : 2024

ON RELATIVE INTEGRAL MONODROMY OF ABELIAN LOGARITHMS AND NORMAL FUNCTIONS

Résumé

The relative algebraic monodromy of abelian logarithms (defined as the kernel of a map between algebraic monodromy groups attached to an abelian scheme with and without a section) was computed in [1]: under natural assumptions, this vector group turns out to be maximal. The relative integral monodromy of abelian logarithms is defined similarly as a kernel of integral monodromy groups, without taking Zariski closures. We show that if the integral monodromy of the abelian scheme is a lattice in the algebraic monodromy (which is not always the case), then the relative integral monodromy of the abelian logarithm is also a lattice in the relative algebraic monodromy. The proof uses a Hodge-theoretic interpretation of sections of abelian schemes. We also consider relative integral monodromy groups in the more general context of normal functions.
Fichier principal
Vignette du fichier
integral relative monodromy3-1-2.pdf (294.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04824039 , version 1 (06-12-2024)

Identifiants

  • HAL Id : hal-04824039 , version 1

Citer

Yves Andre. ON RELATIVE INTEGRAL MONODROMY OF ABELIAN LOGARITHMS AND NORMAL FUNCTIONS. 2024. ⟨hal-04824039⟩
0 Consultations
0 Téléchargements

Partager

More