Exploration-Driven Reinforcement Learning for Avionic System Fault Detection (Experience Paper) - LAAS-Informatique Critique
Communication Dans Un Congrès Année : 2024

Exploration-Driven Reinforcement Learning for Avionic System Fault Detection (Experience Paper)

Résumé

Critical software systems require stringent testing to identify possible failure cases, which can be di cult to nd using manual testing. In this study, we report our industrial experience in testing a realistic R&D ight control system using a heuristic based testing method. Our approach utilizes evolutionary strategies augmented with intrinsic motivation to yield a diverse range of test cases, each revealing di erent potential failure scenarios within the system. This diversity allows for a more comprehensive identi cation and understanding of the system's vulnerabilities. We analyze the test cases found by evolution to identify the system's weaknesses. The results of our study show that our approach can be used to improve the reliability and robustness of avionics systems by providing high-quality test cases in an e cient and cost-e ective manner.
Fichier principal
Vignette du fichier
ISSTA_camery_ready.pdf (1.39 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-04774965 , version 1 (09-11-2024)

Licence

Identifiants

Citer

Paul-Antoine Le Tolguenec, Emmanuel Rachelson, Yann Besse, Florent Teichteil-Koenigsbuch, Nicolas Schneider, et al.. Exploration-Driven Reinforcement Learning for Avionic System Fault Detection (Experience Paper). ISSTA '24: 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis, Sep 2024, Vienne, Austria. pp.920-931, ⟨10.1145/3650212.3680331⟩. ⟨hal-04774965⟩
98 Consultations
9 Téléchargements

Altmetric

Partager

More