
HAL Id: hal-01867673
https://hal.science/hal-01867673

Submitted on 4 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and Multi-Abstraction Level Evaluation of a
NoC Router for Mixed-Criticality Real-Time Systems

Mourad Dridi, Stéphane Rubini, Mounir Lallali, Martha Johanna Sepulveda
Florez, Frank Singhoff, Jean-Philippe Diguet

To cite this version:
Mourad Dridi, Stéphane Rubini, Mounir Lallali, Martha Johanna Sepulveda Florez, Frank Singhoff, et
al.. Design and Multi-Abstraction Level Evaluation of a NoC Router for Mixed-Criticality Real-Time
Systems. ACM Journal on Emerging Technologies in Computing Systems, 2018. �hal-01867673�

https://hal.science/hal-01867673
https://hal.archives-ouvertes.fr


A

Design and Multi-Abstraction Level Evaluation of a NoC Router for
Mixed-Criticality Real-Time Systems

Mourad Dridi, Université de Bretagne Occidentale, Lab-STICC UMR CNRS 6285, Brest, France
Stéphane Rubini, Université de Bretagne Occidentale, Lab-STICC UMR CNRS 6285, Brest, France
Mounir Lallali, Université de Bretagne Occidentale, Lab-STICC UMR CNRS 6285, Brest, France
Martha Johanna Sepúlveda Flórez, Technical University of Munich, Germany
Frank Singhoff, Université de Bretagne Occidentale, Lab-STICC UMR CNRS 6285, Brest, France
Jean-Philippe Diguet, CNRS, Lab-STICC UMR CNRS 6285, Lorient, France

A Mixed Criticality System (MCS) combines real-time software tasks with different criticality levels. In
a MCS, the criticality level specifies the level of assurance against system failure. For high-critical flows of
messages, it is imperative to meet deadlines, otherwise the whole system might fail, leading to catastrophic
results, like, loss of life or serious damage to the environment. In contrast, low-critical flows may tolerate
some delays.

Furthermore, in MCS, flow performances such as the Worst Case Communication Time (WCCT) may
vary depending on the criticality level of the applications. Then, execution platforms must provide different
operating modes for applications with different levels of criticality. To conclude, in Network-On-Chip (NoC),
sharing resources between communication flows can lead to unpredictable latencies and subsequently turns
the implementation of MCS in many-core architectures challenging.

In this article, we propose and evaluate a new NoC router to support MCS based on an accurate WCCT
analysis for high-critical flows. The proposed router, called DAS (Double Arbiter and Switching router),
jointly uses Wormhole and Store And Forward communication techniques for low and high-critical flows re-
spectively. It ensures that high-critical flows meet their deadlines while maximizing the bandwidth remain-
ing for the low-critical flows. We also propose a new method for high-critical communication time analysis,
applied to Store And Forward switching mode with virtual channels. For low-critical flows communication
time analysis, we adapt an existing wormhole communication time analysis with share policy to our context.

The second contribution of this paper is a multi-abstraction level evaluation of DAS. We evaluate the
communication time of flows, the system mode change, the cost and 4 properties of DAS. Simulations with
a cycle-accurate SystemC NoC simulator show that, with a 15% network use rate, the communication delay
of high-critical flows is reduced by 80% while communication delay of low-critical flow is increased by 18%
compared to solutions based on routers with multiple virtual channels. For 10% of network interferences,
using system mode change, DAS reduces the high-critical communication delays about 66%. We synthesize
our router with a 28nm SOI technology and show that the size overhead is limited of 2.5% compared to
the solution based on virtual channel router. Finally, we applied model checking verification techniques to
automatically prove several DAS properties required by critical systems designers.

Additional Key Words and Phrases: Network-On-Chip, Mixed-Criticality System, Wormhole, Store and For-
ward, NoC Router, Communication Time, Virtual Channel Router, IF-Language, SHoC

1. INTRODUCTION
Many-core architectures allow multiple applications to run simultaneously on the
same chip. These applications communicate with each other by exchanging messages
through the communication infrastructure. NoCs are used to support the high commu-
nication demands of many core architectures. They integrate routers and links to al-
low the on-chip communications. NoCs provide communication parallelism with high
bandwidth and modularity. The expected processing power and high communication
bandwidth of NoCs architectures allow designers to deploy many computation inten-
sive functions. For example, in a drone application, designers will need to deploy a
classical flight control software but also computation intensive functions such as im-
age and video processing.

In the context of such systems, the criticality of these applications can be different.
Burns et al. [Burns and Davis 2017] define the criticality as a designation of the level of

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 M. Dridi et al.

assurance against failure needed for a system component. This kind of systems, charac-
terized by two or more distinct levels of criticality, is called Mixed Criticality Systems
(MCS) [Burns and Davis 2017].

In MCS, hard real-time and soft real-time applications share the same hardware
platform and exchange messages through a common communication infrastructure.
Hard real-time applications have very stringent communication service requirements.
Longitudinal flight controller [Pagetti et al. 2014] is an example of hard real-time ap-
plication. It is imperative to meet deadlines otherwise the whole system might fail,
leading to catastrophic results, like, loss of life or serious damage to the environment.
In contrast, soft real-time applications can tolerate some missed deadlines. Video en-
coder is an example of soft real-time applications. So, in this article, we will consider
two criticality levels of communication flows: high-critical flows and low-critical flows.

MCSs operate in different modes in order to ensure that high-critical flows always
meet their deadlines whilst maximizing the use of shared resources. A system starts
in the normal mode, which is the operating mode when all communication timing re-
quirements are met [Burns and Davis 2017]. In this article, we focus on Worst Case
Communication time (WCCT) which is the maximum latency a message for a given
flow will take from the sender to the receiver task. A mode change occurs from the
normal mode to the degraded mode if at least one message is delayed for a longer
time than is acceptable in the current mode, i.e., when the message WCCT is longer
than its deadline. When switching to the degraded mode, messages may be suspended
or aborted depending on their criticality level. In degraded modes, some or all low-
critical flows are suspended in order to give more resources to high-critical flows and
to reduce high-critical flows WCCT. So a MCS can be either in a normal mode or in a
degraded mode depending on unpredictable latency due to NoC shared resources.

To sum up, we focus our work on the deployment of MCS on NoC-based architec-
tures. Applications with different levels of criticality exchange messages through the
communication infrastructure. Sharing resources such as routers, links and buffers
can lead to different unpredictable latencies due to direct interferences and indirect
interferences [Shi and Burns 2008]. Subsequently, the deployment of MCS on NoCs is
a real challenge.

The key component of a NoC is the router, due to its impact on the performance and
on the cost of the chip. Several NoC router architectures have been proposed in order
to minimize delays of messages and to satisfy the timing requirements of hard and soft
real-time applications. However, none of them is able to handle simultaneously high
and low-critical flows. Time-Division-Multiplexing (TDM) routers provide a solution
for flows contention in NoC using time slot reservation [Liu et al. 2015]. TDM routers
are not suitable for MCS because they lead to low throughput for low-critical flows
while providing highly deterministic communication time for high-critical flows. Con-
versely, Virtual Channel (VC) routers reduce the latencies of flows and increase the
network throughput [Kavaldjiev et al. 2004]. However, VC routers also are not suit-
able for MCS: while providing high throughput for low-critical flows, they lead to too
pessimistic WCCT of high-critical flows [Indrusiak et al. 2016].

An on-chip communication architecture for MCS must provide different operating
modes for applications with different levels of criticality deployed on the same network,
in order to reduce the overestimation of WCCT of high-critical flows while improving
the throughput for low-critical flows.

We propose and evaluate a new router called DAS (Double Arbiter and Switching).
It has been designed to efficiently deploy MCS applications over NoCs, and it ensures
the timing constraints for high-critical flows while limiting the bandwidth reservation
for them. In this article, we describe the design of DAS, and we present an accurate
WCCT analysis suitable for this communication architecture.

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:3

DAS is based on N+1 virtual channels: N VCs are dedicated to the communication
of the high-critical flows and the last one is shared by low-critical flows. To enforce
MCS requirements, DAS implements automatic mode changes, 2 levels of preemption,
2 flow control techniques and 2 stages of arbitration. Operating in different modes
and combination of SAF and virtual channels lead to a deterministic WCCT for the
high-critical flows.

In this work, we assume a mapping of the application tasks which ensures that less
than N high-critical flows share a given physical link in the NoC. We also assume that
high-critical flows are characterized by small packet sizes (e.g., control commands),
while low-critical flows are characterized by larger ones (e.g., multimedia packets).

The second contribution of this paper is the multi-abstraction level evaluation of
DAS features. We have used multiple techniques based on different abstraction mod-
els in order to evaluate DAS expected properties. We considered cycle accurate sim-
ulations, formal verification and hardware synthesis. We define four properties DAS
has to comply with in order to formalize an analytic model of the WCCT. Then, those
properties, the WCCT and also the efficiency of system mode change are validated
by using cycle-accurate System C simulations, model checking with the IFx toolset
and a 28nm SOI technology hardware synthesis. The conjunction of these evaluations
strongly underscores the interest of our proposal for supporting the deployment of
MCS on NoC-based architectures.

The remainder of the article is organized as follows. First, we discuss related works
in section 2. Then, we provide an overview of MCS and VC routers, and we present
IF language the IF toolset in section 3. In Section 4, we detail the architecture of
the proposed router. The mode change policy and the subsequent WCCT analysis are
explained in Section 5. DAS properties validation with model checking, cost evaluation
and simulations are presented in Section 6 and compared to those of a VC router. The
Section 7 concludes the paper.

2. RELATED WORK
In this section, we propose an analysis of works related to NoC routers supporting
MCS and highlight their main differences compared to DAS. Moreover, we present
formal verifications work applied to NoCs designs.

2.1. NoCs supporting MCS
In recent years, there has been a growing interest to design NoC routers for Mixed-
criticality applications. Several routers architectures and protocols have been proposed
to deal with the trade-off between resource sharing and separation of different criti-
cality levels.

Tobuschat et al. have proposed a protocol in order to deploy MCS over NoCs architec-
tures. Their protocol, called IDAMC [Tobuschat et al. 2013], maximizes the bandwidth
given to low-critical flows whilst ensuring timing constraints for high-critical flows.

WPMC [Burns et al. 2014] is another protocol applied to Wormhole virtual channels
NoCs in order to running MCS over NoCs. This protocol is improved in [Indrusiak
et al. 2015].

Previous protocols [Tobuschat et al. 2013], [Burns et al. 2014] and [Indrusiak et al.
2015] use Wormhole policy with flit-level priority preemption. With those protocols,
high-critical flows can be preempted by other highly priority flows in flit-level. In addi-
tion, each virtual channel can be shared by many high-critical flows. This configuration
leads to a too pessimistic WCCT and an over reservation of bandwidth for high-critical
flows, which will limit the low-critical communications [Indrusiak et al. 2016].

Ahmadian et al. have proposed Time-Triggered Extension layer (TTEL) for NoC in-
terfaces [Ahmadian and Obermaisser 2015]. With this layer, the NoC is capable of

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 M. Dridi et al.

Table I. Related Work

NoC Topology Routing Switching
Algorithm technique

DSPIN mesh XY Wormhole

Æthereal Indirect Contention-free TDM
network source routing

TRIPS(OCN) mesh YX Wormhole

TERA mesh YX and Wormhole
flops Source routing
NoC with mesh XY Wormhole
DAS and SAF

Different Pessimistic Worst Dynamic resources Suitable
NoC type of traffic Case Communication allocation for MCS

time
Yes: best effort Yes: Wormhole Yes: Priority-based No: Pessimistic

DSPIN and guaranteed with virtual flit level communication
service channels preemption time scheduling
Yes: best effort No: TDM No: TDM-based No: No flit-level

Æthereal and guaranteed arbitration preemption
service

TRIPS No Yes: Wormhole with No: Fair No: support one
(OCN) virtual channels arbitration type of traffic only
TERA No Yes: Wormhole No: Fair No: support one
flops with virtual channels arbitration type of traffic only
NoC with Yes: high and No: SAF for Yes: Criticality-based Yes
DAS low-critical flows high-critical flow flit level preemption

supporting multiple types of communication such as Time-triggered messages, Rate-
constrained messages and Best-effort messages. At the transport layer, in order to
resolve the contention between messages of different traffic types, TTEL imposes the
periods and the phases for time-triggered messages when the Best-effort messages use
only the remaining available bandwidth. However, at the network layer, TTEL assigns
the highest priority to the time-triggered messages and the lower priorities for other
traffic types. Source-based routing is required to use TTEL. Using source routing al-
gorithm, the source node makes all decisions about the routing path of the packet
which complicates the prediction of the worst case communication time. In addition,
low-critical flows cannot share the same path with a high-critical flow which makes
TTEL not suitable for MCS.

Tobuschat et al. have proposed a run-time configurable NoC which supports safety-
critical and best-effort traffic [Tobuschat and Ernst 2017a]. It gives priority to best-
effort traffic over critical traffic, while monitoring is used to change the priority during
at run-time. The flit header is extended with an additional field which hold the slack
information. According to the slack information, priority change is managed. In this
approach, they do not take into account the criticality mode of MCS. Furthermore, for
long packets, adding the slack information to each flit may lead to additional delays.
Finally, the use of Wormhole policy with shared priority and flit-level preemption make
complex the prediction of communication delays.

Several papers show that Wormhole switching mode is suitable for high-critical ap-
plications.

[Rahmati et al. 2013] presents methods to calculate worst case bandwidth and la-
tency bounds for Real-Time traffic on wormhole NoCs with arbitrary topology. The pro-
posed methods apply to best-effort NoC architectures with a round-robin arbitration.

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:5

In this work, authors do not consider flit-level priority preemption. Again, according to
the MCS definition we assume and considering round-robin arbitration and no priority
preemption make this analysis not suitable for us.

[Tobuschat and Ernst 2017b] proposes a real-time communication analysis for best-
effort NoCs with bounded size buffers and backpressure. Backpressure occurs when
the queues in the routers is overflowing. Backpressure constitutes a significant prob-
lem in systems with a shared channel. The authors consider a basic NoC with shared
virtual channels and without flit-level priority preemption. The proposed analysis can
be used for MCS running NoCs with shared virtual channels. We note here that using
DAS, high-critical flows do not share the same virtual channel subsequently we do not
need to consider backpressure in our analysis.

[Panic et al. 2016] analyzes the contention in wormhole based NoC. It proposes a
new metric to measure the worst case communication time: the worst-case contention
delay (WCD). WCD takes into account the pipelined behavior of wormhole based NoC.
It captures the impact of wormhole switching mode on worst case execution time.
[Panic et al. 2016] proposes an analytical model that computes the WCD bounds for
several wormhole based NoC design which help to deploy hard real time application on
NoC architectures. However, in our analysis, we have chosen to work with the metric
WCCT proposed in [Shi 2009]

In this paper, we propose a solution which combines SAF and Wormhole. Using SAF
for high-critical flows facilitates the computation of WCTT while using Wormhole with
flit level preemption for low-critical flows allow us to increase the use rate of the net-
work by low-critical flows.

There are also many NoC architectures for real-time applications, but none of them
are suitable for MCS. In Table I, we compare DAS based NoC with several existing
NoC architectures DSPIN [Miro-Panades et al. 2008], Æthereal [Goossens et al. 2005],
TRIPS(OCN) and Teraflops [Ma et al. 2014]. For each NoC, we present the main char-
acteristics (topology, routing algorithm and switching technique), the expected behav-
ior and the suitability for MCS.

As shown in Table I, DSPIN and Æthereal support two different types of traffic: best
effort and guaranteed service, while TRIPS(OCN) and Teraflops are limited to only one
type of traffic.

For DSPIN, TRIPS(OCN) and Teraflops, using Wormhole virtual channel switching
mode makes the WCCT pessimistic, while TDM-switching allows more accurate WCCT
in Æthereal.

TRIPS(OCN) and Teraflops use fair arbitration. TDM-Based arbitration is used in
Æthereal. For those NoCs, there is no dynamic resources allocation based on priority
or criticality of flows, while DSPIN uses priority-based flit level preemption to ensure
timing constraint of guaranteed service.

TRIPS(OCN) and Teraflops do not accept different types of traffic. Wormhole VC
with priority-based flit-level preemption make the computation of WCTT more pes-
simistic and difficult. Subsequently they make DSPIN not suitable for MCS.

Here, we can conclude, from Table I, that none of those NoCs are suitable for MCS.

2.2. Formal verification
Last part of this section is about formal verifications in the context of NoC architecture
design.

[Gholami and Sarjoughian 2017] proposes extensions to Discrete EVent System
Specification (DEVS) modeling framework for NOC router component model checking
by using constrained DEVS models.

Using Heterogeneous Protocol Automota (HPA), Palaniveloo et al. design a formal
model of the existing HERMES NoC router architecture [Moraes et al. 2004] and its

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 M. Dridi et al.

communication scheme [Palaniveloo and Sowmya 2011]. Simple Promela Interpreter
(SPIN) tool is used for modeling and verifying in order to check the functional proper-
ties of the communication architecture.

Four crucial properties of an NoC router, namely, mutual exclusion, starvation
freedom, deadlock freedom, and conditions for traffic congestions have been verified
in [Chen et al. 2010]. In this work, authors use a formal verification model checking
tool called State Graph Manipulators (SGM) to perform such verifications for the bidi-
rectional channel Network-on-Chip (BiNoC).

Using formal methods, [Zaman 2015] proposes a functional and performance analy-
sis of two types of NoC: circuit switched NoC and packet switched NoC. HERMES is
the chosen packet-switched NoC, while, the Programmable NoC (PNoC) [Zaman 2015]
was chosen as a circuit switched NoC. Properties such as mutual exclusion, starvation
freedom, deadlock and livelock have been verified using the SPIN model checker.

Previous works verify existing NoCs with formal methods, but none of them focused
on deployment of MCS over NoCs. Thus, NoC properties related to MCS, such as the
preemption in flit level between flows with different levels of criticality, were never in-
vestigated. The verification of these properties is absolutely necessary in order to run
MCS over NoCs. In this paper, we focused on this shortfall. First, we gave a formal
specification in IF Language of DAS. Second, a formal validation of a NoC router sup-
porting MCS was performed. We actually investigated DAS properties related to MCS
such as flit-level preemption.

3. BACKGROUND
This section presents the necessary background on NoC routers and MCS to under-
stand the contributions proposed in the next sections. IF language and the IF toolset
are also introduced in this section.

3.1. Virtual Channel NoC Router
The key component in a NoC is the router. The parameters of a router are very impor-
tant as they can modify the power consumption and performances [Jetly 2013].

Several NoC router architectures have been proposed such as TDM router, virtual
channel (VC) router and dynamic router [Ma et al. 2014]. In the sequel, we focus on
VC router, which is the most used to reduce the communication latency of flows. It
is a state of the art solution to allocate communications resources to different flows
according to priorities, so a candidate to manage MCS flows.

Fig. 1 illustrates the major components of a VC router. A VC presents an unidirec-
tional logical connection between two routers multiplexed with other virtual channels
across the physical channel. As shown in Fig. 1, the router is composed of input and
output ports, a routing logic, a VC allocator, a switch allocator and a crossbar [Kavald-
jiev et al. 2004].

3.1.1. Routing logic. It specifies the path of the packet to travel from the source node to
the destination node. For routing algorithms, there are some properties which are re-
quired for interconnection network such as connectivity and deadlock avoidance. Many
routing algorithms have been proposed such as XY, source routing and DyXY [Ma et al.
2014]. In this work, we consider XY routing algorithm, which is a classical and simple
deadlock free solution.

3.1.2. VC allocator, crossbar and arbiters. The VC allocator assigns an available output
channel to a new packet located in one of the input VC buffers. In order to allocate
incoming packets to output channels, an arbitration between all packets requesting
the same output channel is required. After this arbitration and if the requested link

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:7

Fig. 1. Virtual Channel Router. The router has P input ports and P output ports, supporting n virtual
channels per port.

is available, the input virtual channel will request an access to the selected output
channel via the router crossbar.

Several arbitration mechanisms have been used in NoC routers [Jain et al. 2015].
Round-robin and priority-based are 2 examples of these mechanisms: (1) round-robin
arbiter gives the lowest priority to the last served request in the next arbitration, (2)
priority-based arbiter chooses one packet from many requests based on their priority.

3.1.3. Switch Allocator. It performs a matching between incoming packets and output
ports, and generates the required crossbar control signals. Moreover, the switching
mode determines how a packet is allocated to buffers and channels and when it will
receive service. For the Store And Forward mode (SAF), each switch waits for the full
packet to arrive before sending it to the next router [Jetly 2013]. SAF has a huge
impact on the buffer size and communication time which depend on packet size. For
the Wormhole mode, the packet is divided into a number of fixed size flits [Shi 2009].
The packet is split into an header flit, one or several body flits and a tail flit. The
header flit stores the routing information and is used to build the route. As the header
flit moves ahead along the selected path, the remaining flits follow in a pipeline way
and possibly span a number of routers.

3.2. Mixed-Criticality System (MCS)
Recently, Mixed-Criticality system have received broad attention.

Safety standards and industry practices have a different definition of MCS. Criti-
cality relates to the functional safety of an application in industry practice and safety
standards such as the IEC 61508, DO-178B and ISO 26262 standards[Ernst and Na-
tale 2016]. In these industry standards sufficient independence or freedom from in-
terference between functions of different criticality levels in both spatial and timing

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 M. Dridi et al.

domains is required. The MCS model proposed in [Ernst and Natale 2016] answers to
actual criticality requirements as defined by certification standards.

However, the definition of MCS first proposed by Vestal [Vestal 2007] and later sup-
ported by Burns and Davis [Burns and Davis 2017] specifies that the execution plat-
forms must provide different operating modes for applications with different levels of
criticality [Vestal 2007]. This definition makes the challenge of MCS is to achieve the
necessary separation in order to ensure the time-constrained of high-critical applica-
tions, while providing efficient means of sharing resources in order to minimize the
impact of sharing ressources on low-critical applications.

There are different objectives and different meanings assumed for some of the com-
monly used terms. and there are several papers that discuss this disconnect [Esper
et al. 2015], [Graydon and Bate 2013], and [Paulitsch et al. 2015].

In this work, we have chosen to work with the Vestal model. According to this model,
Mixed-Criticality Systems combine real-time software tasks with two or more distinct
levels of criticality. In a MSC, we can find hard real-time applications, which have
very stringent communication service requirements. It is absolutely necessary that all
packets generated by a high-critical flow are delivered before or on their deadline even
under the worst case scenarios.

We can also find soft real-time applications, which can tolerate some delays in the
communication service. Messages generated by a soft real-time application will be
called a low-critical flow in the sequel.

A MCS is defined to operate in a number of modes [Burns and Davis 2017]. A system
starts operating in the normal mode, but a mode change may occur when at least one
message is delayed for a longer time than is acceptable in the actual mode. If a system
has more than one mode, then there must exist a mode change protocol to control
how the system moves between modes [Burns 2014]. The system mode change is the
feature allowing the system to move from one mode to another one. During system
mode changes, flows may be suspended or aborted while flows that exist in both modes
may have their WCCT changed.

A key aspect of MCS is that flow’s parameters such as WCCT and/or period may
be dependent on the criticality level of the system. Here, we consider the real-time
network flow model proposed in [Shi 2009]. Each flow ρi has a set of properties and
timing requirements such as Oi, Ti, Ci(M) and Criti. The release time Oi is the first
time a message of the flow ρi becomes ready to be transmitted. The period Ti is the fixed
delay between releases of successive messages of the flow ρi. Ci(M) is the maximum
duration of transmission latency of a message, i.e., the WCCT. The WCCT Ci(M) of
the flow ρi depends on the current mode M . Here, we consider the maximum packet
size belonging to the flow. We note that for two given modes, e.g. M1 and M2, if M1 is
more critical than M2, then Ci(M1) ≥ Ci(M2) [Vestal 2007]. Finally, Criti denotes the
criticality of the flow ρi. In this work, we assume only two criticality levels: low-critical
flows and high-critical flows.

We consider two modes: degraded mode and normal mode. The explanation of how
those modes work and the mode change protocol is given in Section 5.

3.3. IF Language, IF Toolset, IFx Tool
IF language is used for real-time system specification. However, IF toolset provides
a modeling and validation environment for asynchronous real-time systems. In this
section, first, we present the IF language, then, we explain the validation approach
using the IF toolset.

3.3.1. IF Language. A real-time system specification using IF language [Bozga et al.
2002; Bozga et al. 2004] is composed of active process instances running in parallel

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:9

and interacting asynchronously through shared variables and messages (i.e., signal
instances) passing via communication buffers (i.e., signalroute instances) or by di-
rect addressing. IF processes describe sequential behaviors including communications
(i.e., signal sending and receiving), process creation and destruction, and data trans-
formations (e.g., variable assignments). These processes can be created and destroyed
dynamically during the system execution.

A IF process is defined as a timed automaton extended with data, communication
primitives, and urgency attributes on transitions (deadlines). Each IF process instance
has a unique identifier number (i.e., instance pid), local data (clocks and discrete vari-
ables), control states, and a private input FIFO buffer storing the incoming messages.
In IF Language, a transition is a process reaction in response to: (i) enabledness of pro-
vided expression (un-timed guard), (ii) enabledness of when constraint (timed guard),
(iii) and the presence of input signal in the process instance buffer. Transition reaction
is a set of actions (signal sending, process creation and destruction, variable assign-
ments, clock setting, procedure calls, internal or observable action).

3.3.2. IF Toolset, IFx Tool. The IF toolset [Bozga et al. 2004; Bozga et al. 2002] provides
a modeling and validation environment for asynchronous real-time systems. Figure 2
describes the architecture of the IF toolset which the core components are the syntactic
transformations component and the exploration platform. From an IF specification, the
first component allows the construction of an abstract syntax tree) which is a collection
of C++ objects representing the syntactic elements present in the IF specification (e.g.,
processes, types, variables, etc.). In addition, this component has been used to con-
struct code generators (e.g., simulation code), and static analysis transformations. For
the exploration platform, his main features are: (i) process execution simulation (by us-
ing the abstract syntax trees generated by the first component), (ii) non-determinism
resolution, (iii) management of time and representation of the state space (by compos-
ing all the active processes). This exploration platform can be connected to different
test case generation and model-checking tools (e.g., TGV, CADP).

In the IF toolset, observers are used to specify and verify timing and liveness prop-
erties. These IF observers can control model generation process (by modeling and/or
restricting the environment, cutting off generation of irrelevant states, cutting off ex-
ecution irrelevant paths, etc.) and specify properties in an operational way.

IF language provides observer constructs for every parts of a system (e.g., states,
variables), elapsed time and observable system events including input and output
events, forking of processes, etc.

IF observers are described as an extended timed automaton which are executed in
parallel with the target system (but have always the highest priority during state
exploration). Observers can react synchronously to events and conditions occurring
in the system. They are classified into: (i) pure observers to specify properties to be
checked on the system), cut observers to cut selected executions paths), and intrusive
observers to change the behavior of the system by changing variables or/and sending
signals.

The IF/IFx tool1 2 is developed as an extended version of the IF toolset. IFx pro-
vides simulation features of the IF model and verification of properties such as dead-
locks, timelocks, state invariants and properties expressed in observers or timing con-
straints.

In the following section, we describe the design of the proposed router.

1https://www.irit.fr/ifx/
2http://www-omega.imag.fr/tools/IFx/IFx.php

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 M. Dridi et al.

Fig. 2. The IF Toolset Architecture

4. THE PROPOSED ROUTER: DOUBLE ARBITER AND SWITCHING ROUTER (DAS)
The architecture of DAS is shown Fig. 3. N+1 virtual channels, input and output ar-
bitration units, a routing logic, a VC allocator, a switching allocator and a crossbar
constitute the router. The router combines 2 switching techniques: each port can use
a Wormhole or a Store-And-Forward (SAF) switching technique depending on the crit-
icality of the packets it deals with. In the sequel, we describe the use of the virtual
channels and we explain why we use SAF for the high-critical flows and Wormhole for
the low-critical flows. Then, we discuss how to set N and we detail the two stages of
arbitration used in DAS.

4.1. N+1 Virtual Channels
The VCs 1 to N of DAS are dedicated to the high-critical flows and the VC N+1 is
used for all low-critical flows. The N virtual channels of the high-critical flows use SAF
switching. Each of this VC is dedicated to only one given high-critical flow. The last VC,
dedicated to low-critical flows, is managed by a Wormhole switching technique. Notice
that several low-critical flows can share this channel.

For example, if 3 high-critical flows share the same physical link, they need 3 VCs.
Conversely, when 3 low-critical flows share the same physical link, they use the same
virtual channel.

4.1.1. SAF for high-critical flows. High-critical flows are transmitted with a SAF policy
and the preemption is managed at the packet level. In other words, a high-critical
packet cannot be preempted by another flow. The main drawback of this policy is the
input buffer cost that must be large enough to store the entire packet. We consider that
this cost is limited in our context, since the analysis of real-life critical systems shows

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:11

Fig. 3. DAS architecture: (a) Architecture, (b) Stages of arbitration RL stands for Routing Logic, VC A for
the Virtual Channel Allocator and SA for Switch Allocator

that high-critical flows are usually characterized by small packets size (e.g. sensor and
control signals). For instance, in the avionics Rosace benchmark [Pagetti et al. 2014],
it does not exceed 3 flits of 32 bits. The payload size of controller area network (CAN)
which is a widely-used bus protocol in automotive distributed embedded systems, does
not exceed 8 bytes [Andrade et al. 2018]. Finally, in the ARINC429 protocol which is
an open standard and one of the most adopted protocol in the aeronautical industry,
the payload size does not exceed 24 bits [Santos and d’Amore 2018].

In a Wormhole policy, a packet can be stored over multiple routers and then can
occupy several physical links simultaneously. Consequently, it increases the potential
congestion over the network. The links used by a packet are unavailable for other
packets arriving into the router, and this additional blocking time makes difficult the
computation of the WCCT [Indrusiak et al. 2016]. On the contrary, by using a SAF
policy, each packet is allocated to only one link at a time and the congestion can be
controlled without a prohibitive cost considering small high-critical packets.

From the computation of the WCCT for each flow, we can decide about the schedula-
bility of flows. If the WCCT of a flow is smaller or equal than its deadline, the flow is
said to be schedulable. We consider that the flow set is schedulable when all the flows
are schedulable.

SAF and packet-level preemption allow us to minimize the pessimistic degree of the
computed WCCT. Moreover, by allocating one virtual channel to each high-critical flow,

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 M. Dridi et al.

we can adapt the real-time scheduling analysis proposed in [Shi and Burns 2008] to
SAF policy and compute offline the WCCT for high-critical flows (see section 5.2). As a
result, SAF switching is intended to improve the schedulability of flows.

4.1.2. Wormhole policy for low-critical flows and Flit-level Preemption. Low-critical flows are
transmitted with a Wormhole policy. Wormhole is largely adopted in NoCs because it
does not require large capacity buffers and, at the same time, it minimizes the com-
munication time.

In order to ensure predictable communication time and minimal interference delays
for high-critical flows, we need to preempt a low-critical flow as soon as possible when
a high-critical one occurs. So, the preemption is implemented at the flit level for the
last VC. In other words, high-critical flows, which use the N first VCs, can preempt any
low-critical flows at flit level.

4.1.3. Number of virtual channels. The number N of VCs allocated to high-critical flows
depends on communication requirements of the software tasks, but also of the mapping
of these tasks. On the one hand, for a fixed task mapping, we can choose N as the
maximum of high-critical flows sharing the same link. We note that the higher the
value of N, the larger the overhead of area for the NoC implementation. On the other
hand, for a fixed N, we must choose a task mapping which allows us to have at most N
high-critical flows sharing the same physical link. This kind of problems is similar to a
Quadratic Assignment Problem (QAP) [Al Faruque and Henkel 2008], which is known
as an NP-Hard optimization problem. There are however several heuristics that can
be used for defining such mapping as those described in [Al Faruque and Henkel 2007]
or [Al Faruque and Henkel 2008]. These articles present multi-criteria heuristics to
optimize the total communication volume and the number of VCs. This optimization
issue is orthogonal to the scope of this article.

4.2. The Two Stages of Arbitration
At each cycle, in DAS, only one virtual channel can advance from an input port, and
only one virtual channel can be accepted by each output port. DAS implements input
and output arbitration units in order to solve these problems. As shown in Fig. 3(b),
the input and output arbitration units used in DAS are based on a combination of fair
and priority-based algorithms. In the sequel, we describe these units.

4.2.1. Input Arbitration Unit. Many VCs of the same input port can ask to advance to
different or the same output port while the router can accept just one VC from each
input port at each cycle. The main task of input arbitration unit is to choose one virtual
channel for each input port.

4.2.2. Output Arbitration Unit. Many VCs of different input ports can ask to advance to
the same output port while only one VC can be accepted. The main task of output
arbitration unit is to choose one candidate VC for each output port.

Input and output arbitration units are based on 2 stages of arbitration. The first
stage is a round robin arbitration between the N first VCs while the second stage is a
priority-based arbitration between the winner of the first stage and the last VC (VC
N+1).

The first stage has to be fair and gives equal chance between all the high-critical
flows, while the second stage provides the flit-level preemption to high-critical flows.
So, the winner of the first stage can preempt at flit-level the last VC used by low-critical
flows.

In the following section, we present the different modes of DAS and we explain how
and when the system moves from one mode to another.

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:13

5. SYSTEM MODE CHANGES
We consider two modes: degraded mode and normal mode. In normal mode, all flows
can meet their deadlines. However, in degraded mode, only the high-critical flows meet
their deadlines, while some low-critical flows will miss theirs. We notice that in de-
graded mode, only high-critical flows are routed.

Each I/O port of the network’s router may be either in degraded mode or in normal
mode. We cannot assign a mode per router because each of its I/O port has its own
status. For example, we can have many conflicts on one port while other ports of the
same router are available.

In the sequel, we explain how and why the system moves from one mode to another
one. Then, we present the related WCCT analysis model. Finally, we discuss our choice
of SAF switching mode for MCS.

5.1. Principle of Mode Change
In normal mode, an input or an output port is used by all flows, without interference,
whatever their respected criticality is. On the contrary, in degraded mode, only high-
critical flows transit through the port.

Fig. 4. System mode change for I/O port

The system mode change depends on the result of the router arbiters. Fig. 4 sum-
marizes it by a transition graph. Two stages of arbitration manage the mode change
of each I/O port. The mode change behavior is intended to respect the four properties
stated below. Those properties are verified with Model-Checking using IFx toolset in
the Section 6.

Property 1. In normal mode, high-critical and low-critical flows use the router
without having conflict.
Property 2. In degraded mode, low-critical flows are suspended.
Property 3. High-critical flows always preempt low-critical flows at flit-level.
Property 4. Preempted low-critical flows resume their transmission after the end
of transmission of high-critical flows.

Considering Property 1, In normal mode, high-critical and low-critical flows share
the same router with set time spacing. Considering Property 3, If a high-critical flow
asks for an input already used by a low-critical flow, the related input port changes
its mode into the degraded mode. Similarly, if a high-critical flow asks for an output
already used by a low-critical flow, the related output port changes its mode into de-
graded mode. In other words, if an arbiter detects an interference between flows of

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 M. Dridi et al.

different level of criticality on an input and/or an output port, the I/O port switches to
degraded mode in order to ensure the timing constraints for high-critical flows.

Considering Property 2 and 4, the high-critical flows preempt, at the flit level, the
low-critical flows. When all high-critical flows have left the correspondent input and
output ports, the I/O port returns into the normal mode and is allowed for receiving
low-critical flows again.

Operating the previous modes leads to a deterministic and accurate WCCT. In the
sequel, we present the WCCT analysis model for high-critical and low-critical flows for
each mode.

5.2. Worst case communication time analysis
In this paragraph, we present the WCCT analysis of high-critical and low-critical flows
for DAS.

5.2.1. High-critical flows. The WCCT Ci(M) of a high-critical flow ρi depends on mode
M of each used I/O port. We assume that Ci(M) is equal to the sum of unitary worst
case communication time for all routers belonging to its communication path:

Ci(M) = Ci(S0, ..., Sn) =

n−1∑
j=0

cuij (Sj) (1)

where Ci(M) is the WCCT of a flow ρi with n hops. M is a vector of the modes of
each I/O port used along the path of the flow. cuij (Sj) is the unitary worst case commu-
nication time for the jth hop of a flow ρi, i.e., the maximum duration of transmission
latency for a given hop. It is defined as the time spent by the router to send the mes-
sage to the next router. It depends on the mode of the used input and output ports. Sj

represents the combinations of the input and output port modes for the jth hop of a
flow ρi (see Table II).

We now investigate the unitary worst case communication time cuij for each I/O
port mode. The WCCT may be composed of the path delay (PD), the direct interference
delay (DID) [Dridi et al. 2016] and the preemption delay (PTD).

Let take the following example in order to explain Eq(1). We consider one high-
critical flow, ρ1, as shown in Fig. 5.

Fig. 5. The unitary worst case communication time

ρ1 uses two physical links, then:

C1(M) = C1(S0, ..., S1) =
∑1

j=0 cu1j (Sj) = cu10(S0) + cu11(S1)

Definition 5.1 (Path Delay, PD). A path delay, noted PD, is the delay required to
send the packet from one router to the next router when no traffic flow contention
exists.

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:15

The packet size and the link bandwidth mainly determine PD, and then:

PD = sizemax/Blink + S (2)

where S represents a constant processing delay in each router, Blink is the link band-
width of the link between 2 routers, and sizemax is the maximum packet size belonging
to the flow.

Let see now direct interference delays.

Definition 5.2 (Direct Interference Delay, DID). A direct interference delay,
noted DID, occurs when 2 flows want to access at the same time to a given physical
link.

We assume the packet from the observed traffic-flow is sent just after a high-critical
packet which uses the same physical link (same I/O port).

DID = numberflow · PD (3)

where numberflow indicates the number of high-critical flows which share the same
physical link.

Now, let take the following example in order to explain Eq(3). We consider 3 flows,
ρ1, ρ2 and ρ3, as shown in Fig. 6. Here, we focus on the DID of the flow ρ1.

Fig. 6. Direct interference delay

The first physical link is used only by ρ1. Then DID of ρ1, for the first hop, is:

DID = numberflow · PD = 0 · PD = 0

The second physical link is used by ρ1, ρ2 and ρ3. Then DID of ρ1, for the second hop,
is:

DID = numberflow · PD = 3 · PD
The third physical link is used by ρ1 and ρ2. Then DID of ρ1, for the third hop, is:

DID = numberflow · PD = 1 · PD
The last delay composing the WCCT is the preemption delay.

Definition 5.3 (PreempTion Delay, PTD). The preemption delay is the maximum
blocking delay due to any low-critical flow which has already begun transmission.

The maximum blocking delay happens when a high-critical packet arrives just after
a low-critical packet has started its service.

Considering our flit-level preemption provided by DAS, for each hop, high-critical
flow waits for at most one flit delay and then starts its transmission.

The preemption time is computed by:

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 M. Dridi et al.

PTD = fsize/Blink (4)

Where the flit size is fsize and the link bandwidth is Blink. As both fsize and Blink

are constant, PTD can be considered as constant too.
In a wormhole NoC, we also have indirect interference delays. There is an indirect

interference when two flows do not share any physical link but the have direct inter-
ference with the same flows [Shi 2009]. This kind of interference turns challenging the
communication time analysis [Dridi et al. 2016]. The most pessimistic part in exist-
ing WCCT analysis for NoCs architectures is indirect interference. The more we have
indirect interference, the more pessimistic WCCT analysis we will have.

Using Wormhole switching mode, the packet is divided into several flits. In each cycle
the packet occupies different routers, which increase the probability to have contention
with other flows [Shi 2009]. On the contrary, using a SAF switching mode, the packet
occupies only one router, which decreases the probability to have contention with other
flows. Combining SAF with virtual channel avoid indirect interference latency. Conse-
quently, the WCCT analysis is more accurate. This is why apply this approach with
DAS.

Table II. Worst Case Communication Time of high-critical flows

S Input port Output port Unitary worst case
mode mode communication time cuij

normal normal normal PD + DID (1)
degraded degraded normal PD + DID + PTD (2)
degraded normal degraded PD + DID + PTD
degraded degraded degraded PD + DID + PTD

The Table II presents the unitary worst case communication time, in different
modes, for the jth hop of the high-critical flow ρi. As shown in Table II, we add pre-
emption delay when at least one of the I/O port switches to degraded mode.

In MCS, the scheduling analysis is done for each mode. In normal mode, high-critical
and low-critical flows are scheduled without interference. Therefore, we consider for
high-critical flows the lowest pessimistic unitary Worst Case Communication Time
given by the expression (1) in Table II.

In degraded mode, interferences between high and low-critical flows have been de-
tected, but only high-critical flows have to meet their deadlines in that mode. So, we
consider the expression (2) in Table II which takes into account the preemption delays
due to low-critical flows.

5.2.2. Low-critical flows. For the low-critical flows, we use an analysis method by Shi et
al. described in [Shi and Burns 2009].

In order to analyze the communication time of low-critical flows with a priority share
policy deployed over Wormhole NoC architecture, Shi et al. introduces 2 kinds of pri-
ority levels: natural priority and system priority. Those 2 priority levels are assigned
off-line and remain constant at run-time.

The natural priority is produced relying on a distinct priority per flow policy. Flows
which use the same virtual channel will be mapped to the same system priority.

For system and natural priority, the value 1 denotes the highest priority and larger
integers denote lower priorities. In our case, the system priority of all low-critical flows
is 2, while the system priority of high-critical flows is 1. The natural priority of all low-
critical flows is the same because DAS provides one virtual channel to low-critical
flows.

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:17

Considering natural and system priorities of each flow, [Shi and Burns 2009] as-
sumed that delays of wormhole communications with share policy are composed of the
interferences from higher priority flows and the blocking from flows with the same sys-
tem priority. Based on different priority levels and the competing relationships, they
categorize the delays into four different types:

(1) Direct interference from flows with the higher system priority;
(2) Indirect interference from flow with the higher system priority;
(3) Direct blocking from flows with the same system priority;
(4) Indirect blocking from flows with the same system priority.

Table III. Flow Model

Flow Criticality Size Source Destination Period Deadline
ρ1 High-critical 2 flits 1 4 10 10
ρ2 High-critical 2 flits 2 3 10 10
ρ3 Low-critical 8 flits 2 4 10 10

5.2.3. Example. Now, we take again the previous example in order to explain the given
WCCT analysis. Table III presents the flow model, i.e., the attributes of each flow. We
consider 3 flows as shown in Fig. 6. ρ1 and ρ2 are high-critical flows while ρ3 is a low-
critical flow. We assume that all flows use the same units of time, and then, units of
time are not specified here.

In this example, we consider that Blink = 1 and PTD = 1.
We summarize in the sequel how the WCCT of each flow is computed.

WCCT of ρ1. WCCT for this flow is computed as follow:

C1(M) = C1(S0, ..., S2) =
∑2

j=0 cu1j (Sj) = cu10(S0) + cu11(S1) + cu12(S2)

with:

cu10(normal) = PD +DID = 2/1 + 0 = 2
cu10(degraded) = PD +DID + PTD = 2/1 + 0 + 0 = 2

We notice that PD = 0 and PTD = 0 because the physical link between the routers
1 and 2 is only used by ρ1.

cu11(normal) = PD +DID = 2/1 + 1 · 2 = 4
cu11(degraded) = PD +DID + PTD = 2/1 + 1 · 2 + 1 = 5

cu12(normal) = PD +DID = 2/1 + 0 = 2
cu12(degraded) = PD +DID + PTD = 2/1 + 0 + 1 = 3

Here, PD = 0 since ρ1 is the only high-critical flow who uses the physical link be-
tween the routers 3 and 4.

WCCT of ρ2. WCCT for this flow is computed as follow:

C2(M) = C2(S0) = cu20(S0)

cu20(normal) = PD +DID = 2/1 + 1 · 2 = 4
cu20(degraded) = PD +DID + PTD = 2/1 + 1 · 2 + 1 = 5

WCCT of ρ3 . ρ3 is a low-critical flow. So, we apply the WCCT analysis given in [Shi
and Burns 2009].

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 M. Dridi et al.

5.3. Comparison between SAF and Wormhole for MCS
In this section, we explain our choice of SAF switching mode and how it is more ef-
ficient than wormhole switching mode for MCS. There is two motivations for such
choice. First, SAF provides the minimum WCCT comparing to other switching modes.
Second, the WCCT analysis of SAF is the less pessimistic solution comparing to other
switching modes.

5.3.1. Minimizing WCCT. In most cases, Wormhole switching mode provides the mini-
mum WCCT comparing to other switching modes, but considering the assumptions of
this work, Wormhole loses its effectiveness against SAF switching mode.

Combining virtual channel with SAF allows us to avoid indirect interference. There-
fore, the WCCT of SAF is composed only by the path delay (PD), the direct interference
delay (DID) and the preemption delay (PTD).

However, the WCCT of wormhole is composed by the path delay (PD), the direct in-
terference delay (DID), the indirect interference delay (IID) and the preemption delay
(PTD) [Dridi et al. 2016]. The WCCT of wormhole is then given by:

WCCTwormhole = PDwormhole +DIwormhole + IIDwormhole + PTD

In all cases, we note that PDwormhole is less than PDSAF . The difference between
PDwormholeandPDSAF is decreased since messages of high critical flows are small.

In addition, for high throughput in the network, the indirect interference delay will
be significantly increased in the WCCT anlysis of Wormhole. However, the WCCT anal-
ysis of SAF based router do not suffer from indirect interference delay even for high
throughput in the network.

To conclude, wormhole losses most of its effectiveness against SAF switching mode
considering small message and high throughput.

In section 6.1, we evaluate the communication time of DAS and a Wormhole NoC for
different messages sizes and different throughput levels.

Fig. 7. Communication Time of SAF and Wormhole NoC

5.3.2. Less pessimistic solution. The fundamental issue with MCS is how to enforce
resource guarantee for high-critical flows and efficient resource utilization for low-
critical flows.

In the context of NOC architectures, we want to ensure timing constraints of high-
critical flows and to minimize the impact of shared resources on low-critical flows (i.e.
increase the throughput of low-critical flows). The temporal validation of a real-time
system relies on a set of worst-case behaviors depending on the task and communica-
tion model. Then, for schedulability analysis, we do not look for solutions which only

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:19

minimize communication times but we look for solutions which provide a reasonable
communication time with a less pessimistic worst case communication time analysis.

Fig 7 compares the degree of pessimism using the two solutions, assuming small size
message with high throughput. The degree of pessimism is the difference between the
path delay and the worst case communication time. As shown in Fig 7, PDwormhole is
less than PDSAF . For high throughput in the network, the WCCT of SAF may be less
than WCCT of wormhole because of indirect interference.

Assuming small size messages for high-critical flows and high throughput, Worm-
hole presents a pessimistic schedulability analysis comparing with SAF.

To conclude, SAF is more suitable than Wormhole switching mode for MCS. It is not
only providing the minimum WCCT, but it presents also the less pessimistic WCCT
analysis comparing with wormhole. In the sequel, we present multi-abstraction level
evaluations of DAS.

6. IMPLEMENTATION AND MULTI-ABSTRACTION LEVEL EVALUATIONS
In the previous section, we proposed DAS, a router for MCS. DAS enforces high-critical
flow temporal constraints and maximizes low-critical flow throughput. We also formal-
ize the WCCT of low-critical and high-critical flows. WCCT formalization models the
temporal behavior of DAS.

In this section, we explain how we verify DAS behavior. We evaluate how DAS fulfil
the MCS requirements. The evaluation is made at three levels of abstraction.

At the higher level of abstraction, we choose Model-Checking to validate the arbitra-
tion policies and the mode changes implemented in the router. The Section 6.5 gives
some details about this approach.

In Section 6.1, we use simulation techniques that handle an intermediate abstrac-
tion level, in order to measure the communication time through the DAS router, and
then the efficiency of the system mode change for reducing the high-critical flow WCCT.

In addition, we evaluate the impact of communication delays on tasks. For such a
purpose, we use a longitudinal flight controller benchmark called Rosace [Pagetti et al.
2014].

Simulations are based on a transaction-Level modeling (TLM) of routers in SystemC.
At a lowest level of abstraction, an hardware synthesis allows us to verify the realism

of DAS architecture from the circuit area point of view. The synthesis is done from a
Verilog-HDL model of the router (see Section 6.4).

6.1. Evaluation of communication latency with SystemC simulations
In this subsection, we evaluate the impact of resource sharing on high-critical flows in
order to check the ability of DAS to bound communication delays. Next, we measure
the additional latency on low-critical flows due to the resource reservation for high-
critical flows.

To perform these evaluations, we have implemented DAS in the cycle accurate
SystemC-TLM simulator SHOC [Seplveda et al. 2009]. SHOC provides all NoC com-
ponents for the simulation of many-core architectures. It also supports different types
of traffic generators and consumers, and allows us to observe the traffic in the NoC.

The simulation results are established for 3 different NoCs. The first one is DAS, the
router we proposed in Section 4. The second one is based on a classical architecture of
wormhole virtual channel router (VC router). The third one is a wormhole NoC router
which uses flit-level priority preemption (WNoC). All routers have the same dimension
and topology, i.e., 4*4 2D-mesh. They use the same XY routing algorithm. They use 5
virtual channels per port.

First, we compare DAS with VC router using uniform pattern traffic. Then, we com-
pare DAS with WNoC using All-To-One pattern traffic.

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 M. Dridi et al.

6.1.1. DAS Vs VC router with uniform pattern traffic: Evaluation of high-critical flow latency . In
this section, we verify the ability of DAS to bound the communication delays of high-
critical flows by simulations.

For all simulations, one high-critical flow is assigned to a randomly generated source
and destination node. Then, we perform 100 SHOC simulations by increasing the use
rate of the network. For each simulation, we generate low-critical flow sets which share
some physical links with the high-critical flow. For this experiment, the size of the high-
critical flow is 2 flits while the size of a low-critical flow is 8 flits. The period and the
release time of each flow are randomly generated. The generation of each flow set is
done by applying UUniFast [Bini and Buttazzo 2005].

Fig. 8 and Fig. 9 show the latency of the high-critical flow with different use rates
of the network; The high-critical flow goes respectively through 4 and 3 physical links
from its source to its destination node.

Fig. 8 and Fig. 9 show that DAS is able to reduce significantly the latency of high-
critical flows because of the combination between SAF and virtual channels with flit-
level preemption. For 15% of network use rate and comparing to a VC router, DAS
reduces by 80% the additional latency for a high-critical flow using 3 links.

To conclude, using DAS, high-critical flows are less affected by the sharing of re-
sources with low-critical flows.

6.1.2. DAS Vs VC router with uniform pattern traffic: Evaluation of low-critical flow latency. In this
section, we quantify the latency added by DAS for low-critical flows due to high-critical
flows resource reservation comparing to virtual channel routers.

In contrast to the previous evaluation, for each measure in this experiment, one low-
critical flow is assigned to a randomly generated source and destination node. In order
to increase the network use rate, we perform 100 SHOC simulations by increasing the
number of high-critical flows and by decreasing the period of high-critical flow. We note
that the generation of each flow set is done by applying UUniFast [Bini and Buttazzo
2005]. Then, we measure the low-critical flow latency. The generated high-critical flow
set shares the same physical links with the low-critical flows. For this experiment, the
size of a high-critical flow is 2 flits while the size of a low-critical flow is 8 flits. The
release times of each flow are also randomly generated.

For different use rates of the network, Fig. 10 shows the latency of low-critical flows.
Results show that, compared to a virtual channel router, some additional delays for
low-criticality flows are introduced by the system mode change and the preemption
of low-critical flows used by DAS. For 15% of network use rate and comparing to a
VC router, DAS increases by 25% the additional latency for a low-critical flow using 3
links.

Notice that in MCS, low-critical flows can tolerate some additional delays without
damaging the integrity of the whole system.

6.1.3. DAS vs WNoC with All-To-One pattern traffic: Evaluation of high-critical flow latency. In
this section, we verify the ability of DAS to minimize the communication delays of
high-critical flows by simulations comparing with WNoC.

For all simulations, one high-critical flow is assigned to a randomly generated source
and destination node. We called this flow the first high-criitical flow. Then, we perform
100 SHOC simulations by increasing the use rate of the network. In order to cereate
contention between the first high-critical low and other high-critical flows, we gener-
ate,for each simulation, a high critical flow set of 10 flows which share some physical
links with the first high-critical flow. In order to cereate contention between the first
high-critical flow and low-critical flows, we generate,for each simulation, a low critical
flow set of 40 flows which share some physical links with the first high-critical flow.
All-To-One traffic pattern is used. in All-To-One traffic pattern, the source node will

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:21

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25

La
te

n
cy

 (
C

lo
ck

 c
yc

le
) 

Measured Throughput (% of network capacity)  

VC-Router(Average) VC-Router (MAX) DAS Router (Average) DAS Router (MAX)

Fig. 8. Latency of high-critical flow with 3 physical links

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25

La
te

n
cy

 (
C

lo
ck

 c
yc

le
) 

 

Measured Throughput (% of network capacity)  

VC-Router(Average) VC-Router(MAX) DAS Router(Average) DAS Router(MAX)

Fig. 9. Latency of high-critical flow with 4 physical links

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 M. Dridi et al.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25

La
te

n
cy

 (
cl

o
ck

 c
yc

le
s)

 

Measured Throughput (% of network capacity)  

DAS Router(Average) DAS Router(MAX) VC-Router(Average) VC-Router(MAX)

Fig. 10. Latency of low-critical flows with 4 physical links

be selected randomly using UUniFast [Bini and Buttazzo 2005], while the destination
node is already fixed by the user. All flows of the same set have the same destination
node. For his experiment, the size of the high-critical flow is ranging from 2 to 6 flits
with step of 2 flits while the size of a low-critical flow is 8 flits. The period and the
release time of each flow are randomly generated.

Fig. 11 shows the latency of the first high-critical flow with different use rates of
the network using DAS and WNoC. Fig. 11(a) shows the latency of the high-critical
flow of 2 flits with different use rates of the network and with path distance of 4 and
3 physical links. Results show that DAS is able to reduce significantly the latency of
high-critical flows comparing with WNoC because the combination between SAF and
virtual channels with flit-level preemption and the impact of indirect interference on
communication latency for WNoC. For 14% of network use rate and comparing to a
WNoC, DAS reduces by 64% the additional latency for a high-critical flow using 4
links.

Fig. 11(b) shows the latency of the high-critical flow of 4 flits with different use
rates of the network and with path distance of 4 and 3 physical links. The comparison
between WNoC and DAS for messages of 4 flits shows similar result with a small
advantage for DAS in high throughput.

Fig. 11(c) shows the latency of the high-critical flow of 6 flits with different use rates
of the network and with path distance of 4 and 3 physical links. Results show that
DAS losses its effectiveness against WNoC.

To conclude, considering small packets (no more than 4 flits) and high throughput,
DAS is more efficient than WNoC which makes DAS able to satisfy our MCS require-
ments. However, considering packet with more than 6 flits, DAS losses its effectiveness

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:23

against WNoC which make Wormhole the most interesting switching mode for hard
real-time applications deployed over NoC architectures today.

6.1.4. DAS vs WNoC with All-To-One traffic pattern: Evaluation of low-critical flow latency. In this
section, we quantify the latency added by DAS for low-critical flows due to high-critical
flows resource reservation comparing to WNoC.

In this experiment, one low-critical flow is assigned to a randomly generated source
and destination node. Then, we generate a set of high-critical flow which share the
same physical links with the low critical flow. We note that the used traffic pattern
of high critical flows is All-To-One. We perform 100 SHOC simulations by increasing
the number of high-critical flows and by decreasing the period of high-critical flows in
order to increase the network use rate. For this experiment, the size of a high-critical
flow is 2 flits while the size of a low-critical flow is 8 flits. The release times of each
flow are also randomly generated using UUniFast [Bini and Buttazzo 2005].

Fig. 12 shows the latency of low-critical flows, for different use rates of the network.
Results show that, compared to a WNoC, some additional delays for low-criticality
flows are introduced by the preemption of low-critical flows and SAF switching mode
used by DAS for high-critical flow. For 8% of network use rate and comparing to a
WNoC, DAS increases by 21% the additional latency for a low-critical flow using 3
links.

In MCS, the first requirement is to ensure the timing constraints of high-critical
flow. Providing a fast communication for low-critical flow without ensuring timing con-
strained of high-critical flow do not answer to the MCS requirements.

To conclude, DAS presents the best communication time for high-critical flow com-
paring with WNoC and VC router since messages of high critical flows are small. Com-
paring with other routers such as WNoC and VC router, DAS does not provide the best
communication time of low-critical flows. In this section, we quantify the communica-
tion time for low and high-critical flows using DAS. In the sequel, we study the impact
of communication delay on applications using DAS and WNoC.

6.2. Case study based on the Rosace benchmark
In this section, we evaluate the impact of communication delays on a case study. We
use a well known benchmark in critical system called Rosace. Rosace is a longitudinal
flight controller [Pagetti et al. 2014].

The simulation results are established for DAS and WNoC. Both routers have the
same dimension and topology, i.e., 4*4 2D-mesh. They use the same XY routing algo-
rithm. and they use 5 virtual channels per port.

First we describe the task model, the task mapping and the flow model of the case
study. Then, we evaluate the communication delays of DAS and WNoC on Rosace task
deadlines.

6.2.1. Rosace: a Longitudinal Flight Controller. Rosace is a flight controller software of
medium-range civil aircraft in en-route phase. The autopilot of this software com-
mands a constant vertical speed Vz to change the cruise level until capturing the new
flight level. The autopilot maintains a constant altitude h and the autothrottle main-
tains the airspeed Va during the cruise subphase. The goal of this application is to
track all along the flight: the altitude, the vertical speed and the airspeed commands
(respectively h, Vz and Va).

This flight controller is a multi-periodic real-time C application. Fig 13 shows the
task graph of this controller. The controller is composed of two control loops. The con-
trol loop composed of the tasks τ1, τ2, τ3, τ4, τ5, τ7, τ8, τ9, is the altitude control
loop, which maintains and tracks the vertical speed Vz. Tasks τ1, τ4, τ5, τ6, τ10, τ11

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 M. Dridi et al.

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14

La
te

n
cy

 (
C

lo
ck

 c
yc

le
) 

Measured Throughput (% of Network Capacity) 

WNoC Vs DAS  
Latency of High-Critical flow (2 flits/4 links)   

DAS

WNoC

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 15,5 17

La
te

n
cy

 (
C

lo
ck

 c
yc

le
) 

Measured Throughput (% of Network Capacity) 

WNoC Vs DAS  
Latency of High-Critical flow (2 flits/3 links)   

DAS

WNoC

0

100

200

300

400

500

600

0 2 3 4 5 6 8

La
te

n
cy

 (
C

lo
ck

 c
yc

le
) 

 

Measured Throughput (% of Network Capacity) 

WNoC Vs DAS  
Latency of High-Critical flow (6 flits/4 links)   

 

DAS

WNoC

0

50

100

150

200

250

300

350

400

450

0 2 3 4 5 6 8

La
te

n
cy

 (
C

lo
ck

 c
yc

le
) 

 

Measured Throughput (% of Network Capacity) 
 

WNoC Vs DAS  
Latency of High-Critical flow  (6 flits/ 3 links)   

 

DAS

WNoC

0

50

100

150

200

250

300

350

0 2 4 6 8 10

La
te

n
cy

 (
C

lo
ck

 c
yc

le
) 

Measured Throughput (% of Network Capacity) 

WNoC Vs DAS  
Latency of High-Critical flow (4 flits/3links)   

 

DAS

WNoC

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 10

 L
at

e
n

cy
 (

C
lo

ck
 c

yc
le

) 

Measured Throughput (% of Network Capacity)  

WNoC Vs DAS  
 Latency of High-Critical (4 flits/4 links)   

 

DAS

WNoC

 
(a) 

(b) 

(c) 

Fig. 11. Latency of high-critical flow with DAS and WNoC
(a) size = 2 flits (b) size = 4flits (c) size = 6 flits

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:25

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10

La
te

n
cy

 (
cl

o
ck

 c
yc

le
s)

 

Measured Throughput (% of network capacity) 

DAS

WNoC

Fig. 12. Latency of low-critical flows

T1

T3

T4

T5

T6

T7 T8 T9

T10 T11

T1

T2

T3

T4

T5

T6

T7 T8 T9

T10 T11

T1

T2

T3

T4

T5

T6

T7 T8 T9

T10 T11

T1

T2

T4

T5

T6

T7 T8 T9

T10 T11

T1

T2

T3

T4

T5

T6

T7 T8 T9

T10 T11

τ1

τ2

τ3

τ4

τ5

τ6

τ7 τ8 τ9

τ10 τ11

τ1

Fig. 13. Rosace Task Graph

implement the airspeed control loop that maintains and tracks the desired airspeed
Va.

Each task τi is periodic and defined by the following timing parameters (Ri, Ti,
WCETi, Di, Nodei ). Ri is the release time of the task. Ti is the task period. WCETi is
the task worst case execution time. Di is the deadline of the task. Nodei identifies the
node which executes the task. This parameter allows us to introduce the task mapping
on the NoC. Table IV presents the task model and the task mapping. For the task map-

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 M. Dridi et al.

ping, we choose a task mapping which map each critical task in non-used processor in
order to create the maximum of communication over the network.

Rosace is a critical real-time application and all its tasks require to strictly respect
their deadlines.

Table IV. Task Model

Task Ri Ti (µs) WCETi (µs) Di (µs) Nodei
τ1 0 5000 200 5000 1
τ2 0 10000 100 10000 6
τ3 0 10000 100 10000 8
τ4 0 10000 100 10000 2
τ5 0 10000 100 10000 0
τ6 0 10000 100 10000 4
τ7 0 20000 100 20000 3
τ8 0 20000 100 20000 5
τ9 0 20000 100 20000 7
τ10 0 5000 100 5000 13
τ11 0 5000 100 5000 14

6.2.2. Evaluation of the communication time impact on the Rosace application. Previous exper-
iments evaluate the flow latencies for different network workloads and different traffic
patterns. Now, we evaluate the communication time impact on the Rosace application
using DAS and WNoC.

In order to perform our simulation, we use DTFM [Dridi et al. 2016]. DTFM allow us
to compute the flow model from the task model, the NoC model and the task mapping.
For Rosace, the obtained flow model is used to feed SHOC (DAS and WNoC).

After computation of the Rosace flow communication model, we perform 100 SHOC
simulations by increasing the use rate of the network. For each simulation, we gener-
ate 50 low-critical flow set which share some physical links with the Rosace commu-
nication model. All-To-One traffic pattern is used for the generation of the low-critical
flow set. For this experiment, the size of the high-critical flow is 2 flits, while the size
of a low-critical flow is 8 flits. The period and the release time of each low-critical flow
are randomly generated.

Fig. 14 shows the rate of scheduled task of Rosace with different use rates of the
network. Results show that DAS is more efficient on sharing resources than WNoC.
For 10,71% of low-critical flows network use rate, 57% of tasks are scheduled using
DAS, while using WNoC, we have just 3% of tasks. Using DAS, Rosace can be executed
and respect its timing constraints with 7% of network low-critical flow use rate while
WNoC provide just 5.7%.

6.3. Evaluation of system Mode Changes
The two previous experiments evaluate the flow latencies for different network work-
loads. Now, we increase the number of conflicts between flows, while maintaining the
same network use rate. We assign the release times of high-critical flows to enforce
those conflicts. In this experiment, we verify the ability of DAS to switch from normal
mode to degraded mode.

We show in Fig. 15 the impact of the release times of a high critical flow on commu-
nication latencies. In the first case, the 2 flows share the same link in different time
windows without having any interference. There is no preemption and no additional
latency is expected for the two flows. In the second case, the high-critical flow arrives
slightly before the release time of the low-critical flow. In this case, the two flows share
the same link at the same time. The low-critical flow is delayed by the high-critical one
and there is no preemption. At the third case, the high-critical flow arrives after the

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:27

15; 0 15; 0 0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16

%
 o

f 
sc

h
e

d
u

le
d

 t
as

k 

Measured Throughput (% of network capacity) 
 

WNoC

DAS

Fig. 14. Impact of communication time on application schedulability

release time of the low-critical flow. In this case, the high-critical flow preempts the
low-critical flow, reducing WCCT for high-critical flows.

For this evaluation, we use a flow set where high-criticals and low-critical flows
share the same physical link and use different virtual channels and different release
times. The initial flow set is schedulable. In other word, each flow meets its deadline
without having interference with other flows. It means that the system is initially in
normal mode.

Then, to increase interferences, we change the release time of some flows and we
compute the latency of each high-critical flow and the interference rate of the network.
Here, simulations are performed with SHOC. We present the simulation results for 2
NoCs: a NoC with DAS and another one with a virtual channel router.

Fig. 16 and Fig. 17 show the latency of high-critical flows for 5% and 10% of network
interference respectively. We group the flows following the length of their path, i.e., the
number of hop. Fig. 16 and Fig. 17 present results of flows with 3, 4 and 5 hops.

For 5% of network interferences, DAS reduces more than 70% of the latency of high-
criticality flows with 4 hops comparing with a VC router. For 10% of network inter-
ferences, DAS is able to reduce the communication delay for high-critical flows about
66%.

These results show that DAS is able to change from normal mode to degraded mode
and to minimize the latency for high-critical flows when interferences occur within the
NoC.

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 M. Dridi et al.

Fig. 15. Interferences depending on release times

6.4. Cost evaluation
We now present the results of the hardware synthesis of the DAS architecture that we
made to evaluate its cost.

To evaluate the cost of DAS, three routers have been implemented. The first version
is a NoC router without virtual channel. The second one is DAS. The last one is using
VC routers. All routers have the same parameters, i.e., five bi-directional ports and
32-bits data width. They have the same cumulative buffer size (16-flit buffer size per
port).

We have used Verilog-HDL for the circuit modeling. All routers have been synthe-
sized with synopsys D using a 28 nm ST SOI technology. Tools included in this tech-
nology generate reports describing the area of implementation.

The total cell area of all the 3 versions is presented in the Table V. The total area
overhead of DAS is about 17% when compared with the NoC router without virtual
channel and about 2,5% when compared with virtual channel router.

6.5. Formal verification of DAS
This last set of evaluations use a higher abstraction level. Simulation is the most used
technique for design validation, however, when the design includes numerous param-
eters such as DAS, it is very hard to provide an exhaustive analysis. DAS properties
are also expensive to validate on a real router implementation. In order to overcome
these limitations, we use formal modeling and verification.

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:29

Flows with 3 hops  Flows with 4 hops Flows with 5 hops 

0 

50 

100 

150 

200 

250 

La
te

n
cy

 (
cl

o
ck

 c
yc

le
s)

 

No interference  DAS Router  VC-Router  

Fig. 16. 5% of network interference

Flows with 3 hops Flows with 4 hops Flows with 5 hops 

0 

50 

100 

150 

200 

250 

La
te

n
cy

 (
cl

o
ck

 c
yc

le
s)

 

No interference  DAS Router VC-Router 

Fig. 17. 10% of network interference

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30 M. Dridi et al.

Table V. Synthesis results of routers with Synopsys DC /28 nm ST SOI Technology

NoC Router without Virtual
Virtual Channel Channel Router DAS

Number of ports 5 5 5
Number of VCs 1 3 3
Data width 32-bit 32-bit 32-bit
Buffer’s size per port 16-flit 16-flit 16-flit
Total cell area 16046.31 18369.47 18831.32

In this subsection, we discuss about the formal verification of DAS properties. First,
details of DAS formal specification are given in IF language. Then, we explain the
validation approach of this specification based on DAS properties and using the IF
toolset. The validation approach is composed of interactive simulation and behavioral
properties verification. Interactive simulations with several scenarios using IFx tool
allow us to validate the proposed model. Then, the verification of behavioral properties
of DAS presented in Section 5 is an exhaustive verification performed by IF observers.

6.5.1. Formal DAS Modeling in IF Language. DAS provides numerous functions. First, it
accepts incoming messages. Second, it assigns for each incoming message a virtual
channel depending on its criticality level. Third, the input arbitration unit chooses one
message to be forwarded. Then, the switch unit calculates the destination port of the
message. Finally, the corresponding output arbitration unit selects one message to be
forwarded.

The overall architecture of the DAS Specification. The overall architecture of the
router IF specification is presented in Fig 18. Here, DAS is modeled by an IF system.
An IF system is composed of active process instances running in parallel and inter-
acting asynchronously through shared variables and signals [Bozga et al. 2004]. Next
routers and local processing elements are considered as environment entities of DAS
model.

As shown in Fig. 18, the model system is composed of many entities: a main pro-
cess, multiple instances of a child process (created by the main process after receiving
an input message from the environment), one instance of switch, five instances of the
first stage input arbiter (i.e., input-arbiter-A), the second stage input arbiter (i.e.,
input-arbiter-B), the first stage output arbiter (i.e., output-arbiter-A), and the sec-
ond stage output arbiter (i.e., output-arbiter-B).

The main task of the main process is to create child process instances after receiv-
ing messages from the environment. The main task of the DAS child process is to
compute the possible states of one message forwarded by DAS. The switch process se-
lects the destination output port of the message. Input arbiters (i.e., Input-arbiter-A
and input-arbiter-B) manage conflicts between flows which share the same input
port. Similarly, output arbiters (i.e., output-arbiter-A and output-arbiter-B) man-
age conflicts between messages on the output port.

Figure 19 presents, as example, the input arbiter B (i.e., input-arbiter-B) automa-
ton. [Dridi et al. 2017] provides more details about each entities.

Based on the overall architecture and the state machines of DAS entities, we ex-
pressed a formal specification of DAS in IF language. Below, we present some IF
specification details, especially, data types, global variables, signals (messages) and
signalroutes (communication buffers).

Data Types and Global Variables. In order to configure the DAS router specifica-
tion, we define global constant parameters according to the number of child processes,
arbiters and switches:
system DAS;

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:31

Fig. 18. Overall Architecture of DAS

Fig. 19. The Input-Arbiter-B State Machine

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:32 M. Dridi et al.

const M = 1; /∗ We have one DAS system ∗/
const N = 2; /∗ The number of child processes ∗/
const InA = 1; /∗ The number of Input Arbiter A processes ∗/
const InB = 1; /∗ The number of Input Arbiter B processes ∗/
const OutA = 1; /∗ The number of Output Arbiter A processes ∗/
const OutB = 1; /∗ The number of Output Arbiter B processes ∗/
const SW = 1; /∗ The number of Switch process ∗/
...

endsystem;

These global parameters are used also to reduce the state space exploration during
the DAS model verification. In addition, we define and use a global data structure
(the table childInfoTable), to manage N active child process instances (i.e., virtual
channels of the DAS router) and their information (e.g., instance pid, child table index,
incoming message, the message criticality):
type DASMessageParameterType = record
criticality boolean;
InputAribtreChannelId InArbiterAIdType;
OutputAribtreChannelId OutArbiterAIdType;
endrecord;

type ChildInfoMemberType = record
childPid_exist boolean;
childPid pid;
childIndex IndexType;
childMessage DASMessageParameterType;
stocked boolean;
transferFormat TransferFormatType;
SwitchChannelId SwitchIdType;
InArbiterA_RequestStatus boolean;
InArbiterB_RequestStatus boolean;
...

endrecord;

type ChildInfoTableType = array [N] of ChildInfoMemberType;

Signals and Signalroutes. We use signal types to model exchange messages. 15 sig-
nal types (e.g., DAS request Input Arb B, done, feedback) are defined to be used by
the child process instances to communicate respectively with the environment, the
different arbiters and the switch. For example, the incoming DAS router message
DAS request Input Arb B is sent by the child process instance to the input arbiter A
process instance.

13 signalroutes are used by the DAS specification as communication buffers be-
tween the environment and the different processes themselves. In the example below,
the child process instance handles the signal DAS request Input Arb B to communicate
with the input arbiter B via the signalroute DASChild to Input Arbiter Stage B:
type IndexType = range 0 .. MaxOfChild_Index;

signal DAS_request_Input_Arb_B(IndexType);
signal feedback(boolean, IndexType);
signal done(boolean);

signalroute DASChild__to_Input_Arbiter_Stage_B(InB)
from DASChild to Input_Arbiter_Stage_B
with DAS_request_Input_Arb_B, feedback, done;

In the sequel, we present the validation of DAS formal specification. First, we use
the IFx tool for interactive simulation with several scenarios presented in Table VI and
for exhaustive formal validation of behavioral properties described by IF observers.

6.5.2. Validation with Simulations. In order to validate the main functions of DAS, we
have simulated several scenarios. The different scenarios that were performed by in-

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:33

teractive simulation using the IFx tool are shown in Table VI. It presents also the
scenarios simulation results. The number of iterations for all scenarios is greater than
1 in order to validate that all the components (i.e., IF processes) return to the idle
state.

The two first scenarios (categories 1 and 2) check the simple path of messages with-
out any conflict in the network (i.e., the IF system and its environment). The other
categories investigate scenarios with interferences between messages (arrived mes-
sages DAS input message in the main process of DAS specification). Categories 3, 4 and
5 verify the behavior of DAS against interferences between messages with the same
criticality. Categories 6 and 7 verify the behavior of DAS router against interferences
between messages with different criticality levels.

Finally, we note that all the simulated behaviors are consistent with the expected
behaviors.

Table VI. Validation of DAS model by simulations: scenarios and results

Scenario Category Number of Criticality Input and output Number of Validation
Child (High/Low) Channel Id Iterations Results

Simple routing with 1 High 1, 2, 3 and 4 > 5 Yes
high-critical
Simple routing with 1 Low 1, 2, 3 and 4 > 5 Yes
low-critical
Arbitration between > 3 High Same inputs > 5 Yes
high-critical communication
in input port Different outputs
Arbitration between > 3 High Different inputs > 5 Yes
high-critical communication
in output port Same outputs
Arbitration between > 3 Low Different inputs > 5 Yes
low-critical communication
in output port Same outputs
Flit-level Preemption 3 1 High Same inputs > 5 Yes
in input port 2 Low Different outputs
Flit-level Preemption 3 1 High Different inputs > 5 Yes
in output port 2 Low Same outputs

6.5.3. Exhaustive validation with IF Observers. After interactive simulation, we use the
IFx tool and IF observers (provided by IF language) to describe and exhaustively ver-
ify DAS properties. We now exhibit proofs of the properties. More details about IF
observers are given in [Dridi et al. 2017].

The validation results of the four properties given in the Section 5 are summarized in
Table VII. It shows the number of states, the number of transitions, and the time taken
by the IFx tool for an exhaustive exploration. We can notice that all explorations are
terminated normally without moving to the error state (e.g., line 54 in the Figure 20)
of IF observers and without any exploration cutting.

We use the IFx tool and IF observers formalism to describe and verify DAS proper-
ties. The observer illustrated in Figure 20 checks property 2.

This cut observer monitors the reception of the child process request by the input
arbiter B in the idle state (lines 4,8). The observer keeps monitoring the sending of
the response to the child process with boolean parameter (line 9), if the two internal
variables altCriticality and criticality) are false, When this parameter is equal to
false then the observer moves to an error state and cuts state exploration (lines 18-22,
24), else it moves to idle state (lines 15–17).

From those experiments, we can conclude that DAS model (described in IF language)
satisfies the four behavioral properties of the system mode change.

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:34 M. Dridi et al.

Fig. 20. The IF Cut Observer of the Property 2

1 cut observer obs_prop_2;
2
3 var index IndexType;
4 var response boolean;
5 var Output_Arbiter_Stage_B pid;
6
7 state idle #start ;
8 match input DAS_request_Output_Arb_B(index) in Output_Arbiter_Stage_B;
9 nextstate input_DAS_request_Output_Arb_B_matched;

10 endstate;
11
12 state input_DAS_request_Output_Arb_B_matched;
13 provided ({Output_Arbiter_Stage_B}0) instate availableState;
14 nextstate check_criticity;
15 endstate;
16
17 state check_criticity;
18 provided ({Output_Arbiter_Stage_B}0).criticity = false and ({Output_Arbiter_Stage_B}0).altCriticity=true;
19 nextstate check_match_output_DAS_response_output_Arb_B_false;
20 provided ({Output_Arbiter_Stage_B}0).criticity = false and ({Output_Arbiter_Stage_B}0).altCriticity=false;
21 nextstate check_match_output_DAS_response_output_Arb_B_true;
22 endstate;
23
24 state check_match_output_DAS_response_output_Arb_B_false;
25 match output DAS_response_Output_Arb_B(response);
26 nextstate decision_false;
27 endstate;
28
29 state check_match_output_DAS_response_output_Arb_B_true;
30 match output DAS_response_Output_Arb_B(response);
31 nextstate decision_true;
32 endstate;
33
34 state decision_false #unstable ;
35 provided (response = false);
36 informal ”−−Validation Success!”;
37 nextstate idle;
38 provided (response = true);
39 informal ”−−Validation Fail!”;
40 cut;
41 nextstate err;
42 endstate;
43
44 state decision_true #unstable ;
45 provided (response = true);
46 informal ”−−Validation Success!”;
47 nextstate idle;
48 provided (response = false);
49 informal ”−−Validation Fail!”;
50 cut;
51 nextstate err;
52 endstate;
53
54 state err #error ;
55 endstate;
56
57 endobserver;

Table VII. Exhaustive validation of DAS model by observers: State space and results. Those experiments
were run on a Intel(R) Core(TM) i7-6700HQ CPU @ 2.60Ghz with 32GB RAM.

Properties Number of States Number of Transitions Time (hh:mm:ss) Results
Property 1 7 300 246 4 554 916 00:02:51 Proved
Property 2 1 823 025 566 238 00:00:43 Proved
Property 3 378 452 858 546 00:00:20 Proved
Property 4 356 684 811 734 00:00:18 Proved

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:35

6.6. Conclusion of DAS performance evaluation
Assuming small messages, DAS provides the best communication time for high-critical
flow comparing with WNoC and VC router. DAS reduces by 80% the additional latency
for a high-critical flow for 15% of network use rate and comparing to a VC router. DAS
reduces by 64% the additional latency for a high-critical flow for 14% of network use
rate and comparing to a WNoC. For high throughput in the network, DAS still provide
the best communication time comparing with WNoC. The WCCT analysis is less pes-
simistic than the other solutions. In addition, while ensuring timing requirements of
high-critical flows, DAS allows us to have the better throughput of low-critical flows in
the network comparing with WNoC.

For big messages of high-critical flow, DAS losses its efficiency against WNoC. DAS
does not provide the best communication time of low-critical flows comparing with
other solutions such as WNoC and VC router. For 15% of network use rate and com-
paring to a VC router, DAS increases by 25% the additional latency for a low-critical
flow. For 8% of network use rate and comparing to a WNoC, DAS increases by 21% the
additional latency for a low-critical flow.

To conclude, DAS ensures the timing constraints of high-critical flows, minimizes the
impact of sharing resources on low-critical flows and allows a non pessimistic WCCT
analysis, which makes DAS suitable for the design of MCS.

6.7. Conclusion about multi-abstraction level evaluation
In this article, we evaluate DAS with several abstraction-level methods. We designed
high-level models to perform formal verification with IF. We performed a hardware
synthesis with Verilog HDL. We also made simulations using the SystemC SHOC sim-
ulator. Each abstraction-level evaluation has its own advantages and disadvantages.

Simulation based on a transaction-level modeling of routers in SystemC is charac-
terized by fast time simulation comparing with other techniques. It is an efficient way
of quickly evaluate early designs. However, most of the time, simulations cannot lead
to exhaustive verification, and then, properties cannot be proved.

We also performed an hardware synthesis in order to verify the realism of DAS archi-
tecture from the circuit area point of view. In contrast to SystemC based simulations,
hardware synthesis performs energy consumption and area cost evaluation, but it is
an expensive method which cannot be applied as an early performance evaluation and
design space exploration.

Finally, formal techniques can be helpful at higher levels of abstraction in a vari-
ety of ways. First, with formal techniques, we exhibit formal proofs of the four DAS
properties related to the mode change protocol. It is also an opportunity to understand
functional properties of the design. In our context, system mode change properties
have been identified during formal specification with automata. Second, it helps to de-
tect early errors of the design. Last, the formal specification allows us to detect areas
for improvement and to implement the necessary actions. As an example with DAS,
after formal specification with automata, we have understood that a virtual channel
manager will improve efficiently the performances of the router.

To conclude, the three abstraction level verifications we performed for DAS was an
opportunity to share parts of the models. Indeed, SystemC SHOC routers are imple-
mented as automata that are close by IF language automata. It is then easier to im-
plement System Noc router when their behaviors have been specified and proved with
the IF language.

Those evaluations show that the 3 verification methods were complementary each
others.

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:36 M. Dridi et al.

7. CONCLUSION
In mixed-criticality systems (MCS), applications with different levels of criticality
share the same hardware platform. For that, NoCs for MCS must provide different
operating modes in order to ensure the timing constraints for high-critical commu-
nications while limiting the bandwidth reservation for them, in order to improve the
throughput for low-critical flows. In addition, we need an accurate communication time
analysis in order to avoid the over reservation of resources for high-critical communica-
tions. To conclude, in order to deploy MCS over NoC, we need a router which (i) ensure
the timing constraints for high-critical flows, (ii) minimize the impact of resource shar-
ing on low-critical flows, (iii) and allow an accurate worst case communication time
(WCCT) analysis.

In this article, we have proposed and evaluated a NoC router supporting MCS with
an accurate WCCT analysis. The proposed router, called DAS (Double Arbiter and
Switching router), jointly uses two switching modes: Wormhole and Store And For-
ward. On the assumption that small packets compose the high-critical communication
traffic, the Store and Forward switching mode is used for high-critical flows. Wormhole
policy remains for low-critical flows. DAS has two operating modes: a normal mode
with both low and high-critical flows, and a degraded mode restricted to high-critical
flows only. To move from on mode to another, DAS combines two levels of preemption:
flit-level and packet-level.

To take advantage of many-core processors in real-time high-critical systems, a tem-
poral analysis of their communication time is necessary. The NoC router architecture
we propose helps for this analysis, while maintaining a high communication band-
width. Multiple applications, with different timing requirements, could be carried out
by such an execution platform, and then, the implementation of a real-time system
should be improved from the integration and cost points of view. In order to decide
about the schedulability of high-critical flows, a new analysis of WCCT for SAF com-
munication with virtual channel is given. While, the WCCT analysis of Wormhole com-
munication with shared policy is adapted for low-critical flows.

The second contribution of this paper is a multi-abstraction level evaluation of DAS.
To evaluate DAS, we performed simulations with a SystemC simulator, we exhibit
a formal proof by model-checking and we made an hardware synthesis. Both of the
methods are complementary and allow us to the following results. First, we show a
gain of 80% on latency for the high-critical flows, and a circuit size overhead limited
to 2,5% to respect with a virtual channel router. Second, the evaluation of system
mode change of DAS has shown a gain of 66% on high-critical communication delays
for 10% of network interferences comparing with a virtual channel router. Finally, we
have formally proved 4 properties regarding to the resources sharing between low and
high-criticality flows in DAS.

Future works will address the task mapping according to the constraint of the num-
ber of virtual channels of DAS. We also plan to integrate a virtual channel man-
ager into DAS in order to have a dynamic allocation of virtual channels. Finally, the
WCCT model will be included into an end-to-end response time schedulability analysis
method [Tindell and Clark 1994; Singhoff et al. 2004].

8. ACKNOWLEDGMENTS
This work and Cheddar3 are supported by Brest Métropole, Ellidiss Technologies,
CR de Bretagne, CD du Finistère and Campus France PESSOA programs number
27380SA and 37932TF.

3http://beru.univ-brest.fr/∼singhoff/cheddar/

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:37

REFERENCES
H. Ahmadian and R. Obermaisser. 2015. Time-Triggered Extension Layer for On-Chip Network Inter-

faces in Mixed-Criticality Systems. In 2015 Euromicro Conference on Digital System Design. 693–699.
DOI:http://dx.doi.org/10.1109/DSD.2015.33

Mohammad Abdullah Al Faruque and Jorg Henkel. 2007. Transaction Specific Virtual Channel Allocation in
QoS Supported On-chip Communication. In Proceedings of the IEEE International Conf on Application-
specific Systems, Architectures and Processors (ASAP). 48–53.

Mohammad Abdullah Al Faruque and Jorg Henkel. 2008. Minimizing Virtual Channel Buffer for Routers
in On-chip Communication Architectures. In Proceedings of the Design Automation and Test Europe
Conference (DATE). 1238–1243.

R. De Andrade, K. N. Hodel, J. F. Justo, A. M. Lagan, M. M. Santos, and Z. Gu. 2018. Analytical
and Experimental Performance Evaluations of CAN-FD Bus. IEEE Access 6 (2018), 21287–21295.
DOI:http://dx.doi.org/10.1109/ACCESS.2018.2826522

Enrico Bini and Giorgio C Buttazzo. 2005. Measuring the performance of schedulability tests. Real-Time
Systems 30, 1-2 (2005), 129–154.

Marius Bozga, Susanne Graf, and Laurent Mounier. 2002. IF-2.0: A Validation Environment for Component-
Based Real-Time Systems. In Proceedings of the 14th International Conference on Computer Aided
Verification (CAV ’02). Springer-Verlag, London, UK, UK, 343–348. http://dl.acm.org/citation.cfm?id=
647771.734275

Marius Bozga, Susanne Graf, Iulian Ober, and Joseph Sifakis. 2004. The IF toolset. In Formal Methods for
the Design of Real-Time Systems. International School on Formal Methods for the Design of Computer,
Communication and Software Systems, SFM-RT 2004. Revised Lectures (Lecture Notes in Comput. Sci.
Vol. 3185). LNCS, Vol. 3185. Springer-Verlag, 237–267.

Alan Burns. 2014. System Mode Changes - General and Criticality-Based. In Proceedings of the 2nd work-
shop on Mixed Criticality Systems (WMC). 3–8.

Alan Burns and Robert Davis. 2017. Mixed criticality systems-a review, 9th ed. Technical Report. Department
of Computer Science, University of York. http://www-users.cs.york.ac.uk/burns/review.pdf.

Alan Burns, James Harbin, and Leandro Soares Indrusiak. Dec 2014. A Wormhole NoC Protocol for Mixed
Criticality Systems. In Real-Time Systems Symposium (RTSS). IEEE.

Yean-Ru Chen, Wan-Ting Su, Pao-Ann Hsiung, Ying-Cherng Lan, Yu-Hen Hu, and Sao-Jie Chen. 2010.
Formal modeling and verification for Network-on-chip. In The 2010 International Conference on Green
Circuits and Systems. 299–304.

Mourad Dridi, Mounir Lallali, Stéphane Rubini, MJ Sepúlveda, Frank Singhoff, and Jean-Philippe Diguet.
2017. Modeling and Validation of a Mixed-Criticality NoC Router Using the IF Language. In 10th Inter-
national Workshop on Network on Chip Architectures (NoCArc).

Mourad Dridi, Stéphane Rubini, Frank Singhoff, and Jean-Philippe Diguet. 2016. DTFM: a Flexible Model
for Schedulability Analysis of Real-Time Applications on NoC-based Architectures. In 4th IEEE Inter-
national Workshop on Real-Time Computing and Distributed systems in Emerging Applications (REAC-
TION). 43–49.

R. Ernst and M. Di Natale. 2016. Mixed Criticality Systems A History of Misconceptions? IEEE Design Test
33, 5 (Oct 2016), 65–74. DOI:http://dx.doi.org/10.1109/MDAT.2016.2594790

Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Eduardo Tovar. 2015. How Realistic is
the Mixed-criticality Real-time System Model?. In Proceedings of the 23rd International Confer-
ence on Real Time and Networks Systems (RTNS ’15). ACM, New York, NY, USA, 139–148.
DOI:http://dx.doi.org/10.1145/2834848.2834869

Soroosh Gholami and Hessam S. Sarjoughian. 2017. Modeling and Verification of Network-on-chip Using
constrained-DEVS. In Proceedings of the Symposium on Theory of Modeling & Simulation (TMS/DEVS
’17). Society for Computer Simulation International, San Diego, CA, USA, Article 9, 12 pages.

Kees Goossens, John Dielissen, and Andrei Radulescu. 2005. Æthereal network on chip: concepts, architec-
tures, and implementations. IEEE Design Test of Computers 22, 5 (Sept 2005), 414–421.

P. Graydon and I. Bate. 2013. Safety Assurance Driven Problem Formulation for Mixed-Criticality Schedul-
ing. In Proceedings of the Workshop on Mixed-Criticality Systems. 19–24.

Leandro Soares Indrusiak, Alan Burns, and Borsilav Nikoli. 2016. Analysis of buffering effects on hard real-
time priority-preemptive wormhole networks. Technical Report arXiv:1606.02942. https://arxiv.org/abs/
1606.02942.

Leandro Soares Indrusiak, James Harbin, and Alan Burns. 2015. Average and Worst-Case Latency Im-
provements in Mixed-Criticality Wormhole Networks-on-Chip. In Proceedings of the 27th Euromicro
Conference on Real-Time Systems (ECRTS). 47–56.

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



A:38 M. Dridi et al.

Kunj Jain, Sandeep K. Singh, Alak Majumder, and Abir J. Mondai. 2015. Problems encountered in various
arbitration techniques used in NOC router: A survey. In 2015 International Conference on Electronic
Design, Computer Networks Automated Verification (EDCAV). 62–67.

Krunal Jetly. 2013. Experimental Comparison of Store-and-Forward and Wormhole NoC Routers for FPGAs.
Ph.D. Dissertation. University of Windsor.

Nikolay Kavaldjiev, Gerard J. M. Smit, and Pierre G. Ja nsen. 2004. A virtual channel router
for on-chip networks. In IEEE International SOC Conference, 2004. Proceedings. 289–293.
DOI:http://dx.doi.org/10.1109/SOCC.2004.1362438

Shaoteng Liu, Zhonghai Lu, and Axel Jantsch. 2015. Highway in TDM NoCs. In Proceedings of the 9th
International Symposium on Networks-on-Chip. ACM.

Sheng Ma, Libo Huang, Mingche Lai, and Wei Shi. 2014. NETWORKS-ON-CHIP From implementation to
programming paradigms. Morgan Kaufmann.

Ivan Miro-Panades, Fabien Clermidy, Pascal Vivet, and Alain Greiner. 2008. Physical Implementation of the
DSPIN Network-on-Chip in the FAUST Architecture. In Proccedings of the second ACM/IEEE Interna-
tional Symposium on Networks-on-Chip (nocs2008). 139–148.

Fernando Moraes, Ney Calazans, Aline Mello, Leandro Muller, and Luciano Ost. 2004. HERMES: an infras-
tructure for low area overhead packet-switching networks on chip. Integration, the VLSI Journal 38, 1
(2004), 69 – 93. http://www.sciencedirect.com/science/article/pii/S0167926004000185

Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron. 2014. The ROSACE case
study: from Simulink specification to multi/many-core execution. In Proceedings of the 20th Interna-
tional Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 309–318.

Vinitha Arakkonam Palaniveloo and Arcot Sowmya. 2011. Application of Formal Methods for System-Level
Verification of Network on Chip. In 2011 IEEE Computer Society Annual Symposium on VLSI. 162–169.

M. Panic, C. Hernandez, E. Quinones, J. Abella, and F. J. Cazorla. 2016. Modeling High-Performance Worm-
hole NoCs for Critical Real-Time Embedded Systems. In 2016 IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS). 1–12. DOI:http://dx.doi.org/10.1109/RTAS.2016.7461342

M. Paulitsch, O. M. Duarte, H. Karray, K. Mueller, D. Muench, and J. Nowotsch. 2015. Mixed-Criticality
Embedded Systems – A Balance Ensuring Partitioning and Performance. In 2015 Euromicro Conference
on Digital System Design. 453–461. DOI:http://dx.doi.org/10.1109/DSD.2015.100

D. Rahmati, S. Murali, L. Benini, F. Angiolini, G. De Micheli, and H. Sarbazi-Azad. 2013. Computing Accu-
rate Performance Bounds for Best Effort Networks-on-Chip. IEEE Trans. Comput. 62, 3 (March 2013),
452–467. DOI:http://dx.doi.org/10.1109/TC.2011.240

M. S. Santos and R. d’Amore. 2018. Error detection method for the ARINC429 communication. In 2018 IEEE
19th Latin-American Test Symposium (LATS). 1–6. DOI:http://dx.doi.org/10.1109/LATW.2018.8349687

Martha Johanna Seplveda, Marius Strum, and Wang Jiang Chau. 2009. Performance Impact of QoSS
(Quality-of-Security-Service) Inclusion for NoC-based Systems. In 17th IFIP/IEEE International Con-
ference on Very Large Scale Integration (VLSI-SoC). 12–14.

Zheng Shi. 2009. Real-Time Communication Services for Networks on Chip. Ph.D. Dissertation. University
of York.

Zheng Shi and Alan Burns. 2008. Real Time Communication Analysis for On-Chip Networks with Wormhole
Switching. In Proceedings of the Second ACM/IEEE International Symposium on Networks-on-Chip
(NOCS). 161–170.

Zheng Shi and Alan Burns. 2009. Real-Time Communication Analysis with a Priority Share Policy in On-
Chip Networks. In Proceedings of the 21st Euromicro Conference on Real-Time Systems (ECRTS). 3–12.

F. Singhoff, J. Legrand, L. Nana, and L. Marcé. 2004. Cheddar: a flexible Real-Time Scheduling Framework.
ACM SIGAda Ada Letters 24, 4 (Dec 2004), 1–8.

Ken Tindell and John Clark. 1994. Holistic schedulability analysis for distributed hard real-time systems.
Microprocessing and microprogramming 40, 2-3 (1994), 117–134.

Sebastian Tobuschat, Philip Axer, and Rolf Ernst. 2013. IDAMC: A NoC for mixed criticality systems. In 19th
International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA).
IEEE, 149–156.

Sebastian Tobuschat and Rolf Ernst. 2017a. Efficient Latency Guarantees for Mixed-Criticality Networks-
on-Chip. In Real-Time and Embedded Technology and Applications Symposium (RTAS). 43–49.

S. Tobuschat and R. Ernst. 2017b. Real-time communication analysis for Networks-on-Chip with back-
pressure. In Design, Automation Test in Europe Conference Exhibition (DATE), 2017. 590–595.
DOI:http://dx.doi.org/10.23919/DATE.2017.7927055

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.



- A:39

Steve Vestal. 2007. Preemptive scheduling of multi-criticality systems with varying degrees of execution
time assurance. In Proceedings of the 28th International Real-Time Systems Symposium (RTSS). IEEE,
239–243.

Anam Zaman. 2015. Formal verification of Network-on-Chip Architecture. Ph.D. Dissertation. NUST, Islam-
abad, Pakistan.

JETC, Vol. V, No. N, Article A, Publication date: January YYYY.


