R. Garrels and A. Lerman, Phanerozoic cycles of sedimentary carbon and sulfur, Proceedings of the National Academy of Sciences, vol.78, issue.8, pp.4652-4656, 1981.
DOI : 10.1073/pnas.78.8.4652

URL : http://www.pnas.org/content/78/8/4652.full.pdf

D. Fike, A. Bradley, and C. Rose, Rethinking the ancient sulfur cycle Annual Review 274 of Earth and Planetary Sciences 43. doi:10.1146/annurev-earth-060313-054802, 2015.

D. Canfield, Biogeochemistry of sulfur isotopes. Reviews in Mineralogy and 276, Geochemistry, vol.43, issue.1, pp.607-636, 2001.
DOI : 10.2138/gsrmg.43.1.607

D. Fike, J. Grotzinger, L. Pratt, and R. Summons, Oxidation of the Ediacaran Ocean, Nature, vol.33, issue.7120, pp.744-747, 2006.
DOI : 10.1038/nature05345

A. Riccardi, M. Arthur, and L. Kump, Sulfur isotopic evidence for chemocline 280 upward excursions during the end-Permian mass extinction, Geochimica et Cosmochimica 281 Acta, pp.5740-5752, 2006.
DOI : 10.1016/j.gca.2006.08.005

D. Jones and D. Fike, Dynamic sulfur and carbon cycling through the end-Ordovician 283 extinction revealed by paired sulfate?pyrite ? 34 S, Earth and Planetary Science Letters, vol.284, pp.363144-155, 2013.
DOI : 10.1016/j.epsl.2012.12.015

A. Kampschulte and H. Strauss, The sulfur isotopic evolution of Phanerozoic seawater 286 based on the analysis of structurally substituted sulfate in carbonates, Chemical Geology, vol.287, issue.204, pp.255-286, 2004.

M. Hurtgen, G. Halverson, and M. Arthur, Sulfur cycling in the aftermath of a 635- 289 Ma snowball glaciation: evidence for a syn-glacial sulfidic deep ocean. Earth and 290 Planetary Science Letters, pp.551-570, 2006.

B. Gill, T. Lyons, S. Young, L. Kump, and A. Knoll, Geochemical evidence for widespread euxinia in the Later Cambrian ocean, Nature, vol.58, issue.7328, pp.80-83, 2011.
DOI : 10.1016/j.gca.2006.08.021

D. Yan, D. Chen, Q. Wang, J. Wang, and Z. Wang, Carbon and sulfur isotopic anomalies 294 across the Ordovician?Silurian boundary on the Yangtze Platform, pp.32-39, 2009.
DOI : 10.1016/j.palaeo.2008.12.016

T. Zhang, Y. Shen, R. Zhan, S. Shen, and X. Chen, Large perturbations of the carbon and 297 sulfur cycle associated with the Late Ordovician mass extinction in South China, Geology, vol.298, issue.4, pp.37299-302, 2009.

P. Gorjan, K. Kaiho, D. Fike, and C. Xu, ) Carbon-and sulfur-isotope geochemistry of the 300, 2012.

. Hirnantian, Late Ordovician) Wangjiawan (Riverside) section, South China: global 301 correlation and environmental event interpretation, pp.302-337

E. Hammarlund, T. Dahl, and D. Harper, A sulfidic driver for the end-Ordovician 304 mass extinction. Earth and Planetary Science Letters, pp.331-332128, 2012.

J. Ries, D. Fike, L. Pratt, and T. Lyons, Superheavy pyrite (??34Spyr > ??34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: A consequence of low seawater sulfate at the dawn of animal life, Geology, vol.37, issue.8, pp.743-746, 2009.
DOI : 10.1130/G25775A.1

M. Rabineau, S. Berné, D. Aslanian, and J. Olivet, Sedimentary sequences in the Gulf of 309, 2005.

G. Jouet, S. Berné, M. Rabineau, M. Bassetti, and P. Bernier, Shoreface migrations at the shelf edge and sea-level changes around the Last Glacial Maximum (Gulf of Lions, NW Mediterranean), Marine Geology, vol.234, issue.1-4, pp.21-42, 2006.
DOI : 10.1016/j.margeo.2006.09.012

URL : https://hal.archives-ouvertes.fr/hal-00145076

A. Cortina, F. Sierro, B. Gonzalez-mora, and A. Asioli, Impact of climate and sea level 315 changes on the ventilation of intermediate water and benthic foraminifer assemblages in 316 the Gulf of Lions, 2011.

. Sea, Gulf of Lions), Palaeogeography, Palaeoclimatology, Palaeoecology, vol.309, pp.215-228

A. Cortina, F. Sierro, and J. Flores, The response of SST to insolation and ice sheet 319 variability from MIS 3 to MIS 11 in the northwestern Mediterranean Sea (Gulf of Lions), 2015.

A. Cortina, J. Grimalt, and B. Martrat, Anomalous SST warming during MIS 13 in the Gulf of Lions (northwestern Mediterranean Sea), Organic Geochemistry, vol.92, pp.16-23, 2016.
DOI : 10.1016/j.orggeochem.2015.12.004

A. Lamb, G. Wilson, and M. Leng, A review of coastal palaeoclimate and relative sea-level reconstructions using ??13C and C/N ratios in organic material, Earth-Science Reviews, vol.75, issue.1-4, pp.29-57, 2006.
DOI : 10.1016/j.earscirev.2005.10.003

F. Sierro, N. Andersen, M. Bassetti, and S. Berné, Phase relationship between sea level 327 and abrupt climate change, Quaternary Science Reviews, pp.1-15, 2009.
DOI : 10.1016/j.quascirev.2009.07.019

D. Canfield, Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments, Deep Sea Research Part A. Oceanographic Research Papers, vol.36, issue.1, pp.36121-138, 1989.
DOI : 10.1016/0198-0149(89)90022-8

T. Tesi, S. Miserocchi, M. Goñi, and L. Langone, Source, transport and fate of terrestrial 332 organic carbon on the western Mediterranean Sea, Gulf of Lions, France. Marine 333, Chemistry, vol.105, pp.101-117, 2007.

J. Owens, B. Gill, and H. Jenkyns, Sulfur isotopes track the global extent and 335 dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2, pp.18407-18412, 2013.

L. Kah, T. Lyons, and T. Frank, Low marine sulphate and protracted oxygenation of the Proterozoic biosphere, Nature, vol.44, issue.7010, pp.834-838, 2004.
DOI : 10.1016/S0016-7037(00)00572-X

M. Böttcher, S. Bernasconi, and H. Brumsack, CARBON, SULFUR, AND 339 OXYGEN ISOTOPE GEOCHEMISTRY OF INTERSTITIAL WATERS FROM THE 340 WESTERN MEDITERRANEAN, Proceedings of Ocean Drillings Program, Scientific 341 results, pp.413-421, 1999.

E. Rohling, G. Foster, K. Grant, G. Marino, and A. Roberts, Sea-level and deep-sea- 343 temperature variability over the past 5.3 million years, Nature, vol.504, pp.477-482, 2014.

F. Hernández-molina and D. Stow, Onset of Mediterranean outflow into the North Atlantic, Science, vol.6, issue.6800, pp.1244-1250, 2014.
DOI : 10.1038/ngeo1680

M. Sim, S. Ono, K. Donovan, and S. Templer, Effect of electron donors on the 347 fractionation of sulfur isotopes by a marine Desulfovibrio sp, Geochimica et 348 Cosmochimica Acta, pp.4244-4259, 2011.

W. Leavitt, I. Halevy, and A. Bradley, Influence of sulfate reduction rates on the 350 Phanerozoic sulfur isotope record, pp.11244-11249, 2013.

P. Censi, A. Incarbona, E. Oliveri, S. Bonomo, and G. Tranchida, Yttrium and REE signature recognized in Central Mediterranean Sea (ODP Site 963) during the MIS 6???MIS 5 transition, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.292, issue.1-2, pp.201-210, 2010.
DOI : 10.1016/j.palaeo.2010.03.045

M. Gomes and M. Hurtgen, Sulfur isotope systematics of a euxinic, low-sulfate lake: Evaluating the importance of the reservoir effect in modern and ancient oceans, Geology, vol.41, issue.6, pp.41663-666, 2013.
DOI : 10.1130/G34187.1

G. Claypool, Ventilation of marine sediments indicated by depth profiles of pore water sulfate and ??34S, The Geochemical Society Special Publications, vol.9, pp.59-65, 2004.
DOI : 10.1016/S1873-9881(04)80007-5

T. Present, G. Paris, A. Burke, and W. Fischer, Large Carbonate Associated Sulfate 360 isotopic variability between brachiopods, micrite, and other sedimentary components in 361, 2015.
DOI : 10.1016/j.epsl.2015.10.005

D. Fike and J. Grotzinger, A paired sulfate?pyrite ? 34 S approach to understanding 363 the evolution of the Ediacaran?Cambrian sulfur cycle, Geochimica et Cosmochimica Acta, vol.364, pp.722636-2648, 2008.

P. Sansjofre, P. Cartigny, and R. Trindade, Multiple sulfur isotope evidence for massive 366 oceanic sulfate depletion in the aftermath of Snowball Earth, Nature Communications, vol.7, 2016.

T. Goldberg, H. Strauss, Q. Guo, and C. Liu, Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.254, issue.1-2, pp.175-193, 2007.
DOI : 10.1016/j.palaeo.2007.03.015

L. Feng, X. Chu, J. Huang, Q. Zhang, and H. Chang, Reconstruction of paleo-redox conditions and early sulfur cycling during deposition of the Cryogenian Datangpo Formation in South China, Gondwana Research, vol.18, issue.4, pp.632-637, 2010.
DOI : 10.1016/j.gr.2010.02.011

J. Parnell, A. Boyce, D. Mark, S. Bowden, and S. Spinks, Early oxygenation of the terrestrial environment during the Mesoproterozoic, Nature, vol.66, issue.7321, pp.290-293, 2010.
DOI : 10.1038/nature09538

D. Canfield, R. Raiswell, J. Westrich, and C. Reaves, The use of chromium reduction 377 in the analysis of reduced inorganic sulfur in sediments and shales, Chemical Geology, vol.378, pp.54149-155, 1986.

M. Tuttle, M. Goldhaber, and D. Williamson, An analytical scheme for determining forms of sulphur in oil shales and associated rocks, Talanta, vol.33, issue.12, pp.953-961, 1986.
DOI : 10.1016/0039-9140(86)80234-X

E. Burton, L. Sullivan, R. Bush, and S. Johnston, A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils, Applied Geochemistry, vol.23, issue.9, pp.2759-383, 2008.
DOI : 10.1016/j.apgeochem.2008.07.007

K. Grant, E. Rohling, C. Ramsey, and H. Cheng, Sea-level variability over five glacial 385 cycles, Nature Communications, vol.5, pp.10-1038, 2014.
DOI : 10.1038/ncomms6076

URL : http://www.nature.com/articles/ncomms6076.pdf

S. Barker, G. Knorr, R. Edwards, and F. Parrenin, 000 years of abrupt climate 387 variability, Science, vol.800, issue.334, pp.347-351, 2011.
DOI : 10.1126/science.1203580

L. Railsback, P. Gibbard, and M. Head, An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages, Quaternary Science Reviews, vol.111, pp.94-106, 2015.
DOI : 10.1016/j.quascirev.2015.01.012