M. T. Koper and E. Bouwman, Electrochemical Hydrogen Production: Bridging Homogeneous and Heterogeneous Catalysis, Angewandte Chemie International Edition, vol.7, issue.22, pp.3723-3725, 2010.
DOI : 10.1002/anie.201000629

D. G. Nocera, The Artificial Leaf, Accounts of Chemical Research, vol.45, issue.5, pp.767-776, 2012.
DOI : 10.1021/ar2003013

U. Koelle and S. Paul, Electrochemical reduction of protonated cyclopentadienylcobalt phosphine complexes, Inorganic Chemistry, vol.25, issue.16, pp.2689-2694, 1986.
DOI : 10.1021/ic00236a007

I. Bhugun, D. Lexa, and J. Savéant, Homogeneous Catalysis of Electrochemical Hydrogen Evolution by Iron(0) Porphyrins, Journal of the American Chemical Society, vol.118, issue.16, pp.3982-3983, 1996.
DOI : 10.1021/ja954326x

J. L. Dempsey, B. S. Brunschwig, J. R. Winkler, and H. B. Gray, Hydrogen Evolution Catalyzed by Cobaloximes, Accounts of Chemical Research, vol.42, issue.12, p.42, 1995.
DOI : 10.1021/ar900253e

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.425.5134

P. Du and R. Eisenberg, Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges, Energy & Environmental Science, vol.46, issue.3, pp.6012-6021, 2012.
DOI : 10.1039/c2ee03250c

P. D. Tran and J. Barber, Proton reduction to hydrogen in biological and chemical systems, Physical Chemistry Chemical Physics, vol.334, issue.24, pp.13772-13784, 2012.
DOI : 10.1039/C2EE22611A

M. Wang, L. Chen, and L. Sun, Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts, Energy & Environmental Science, vol.334, issue.5, pp.6763-6778, 2012.
DOI : 10.1039/c2ee03309g

V. S. Thoi, Y. Sun, J. R. Long, and C. J. Chang, Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions, Chem. Soc. Rev, 2013.

J. G. Birkmire and . Chen, Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates, Angew. Chem. Int. Ed, vol.49, pp.9859-9862, 2010.

D. J. Evans and C. J. Pickett, Chemistry and the hydrogenases, Chemical Society Reviews, vol.32, issue.5, pp.268-275, 2003.
DOI : 10.1039/b201317g

J. F. Capon, F. Gloaguen, P. Schollhammer, and J. Talarmin, Catalysis of the electrochemical h2 evolution by di-iron sub-site models, Coord. Chem. Rev, pp.249-1664, 2005.

G. Wang, C. J. Sawers, and . Pickett, Synthesis of the h-cluster framework of iron-only hydrogenase, Nature, pp.433-610, 2005.

F. Gloaguen and T. B. Rauchfuss, Small molecule mimics of hydrogenases: hydrides and redox, Chem. Soc. Rev., vol.14, issue.221, pp.100-108, 2009.
DOI : 10.1039/B801796B

B. E. Barton, M. T. Olsen, and T. B. Rauchfuss, Artificial hydrogenases, Current Opinion in Biotechnology, vol.21, issue.3, pp.292-297, 2010.
DOI : 10.1016/j.copbio.2010.03.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903054

F. Gloaguen, J. D. Lawrence, and T. B. Rauchfuss, Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate, Journal of the American Chemical Society, vol.123, issue.38, pp.9476-9477, 2001.
DOI : 10.1021/ja016516f

D. Chong, I. P. Georgakaki, R. Mejia-rodriguez, J. Sanabria-chinchilla, M. P. Soriaga et al., Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships, Dalton Trans., vol.37, issue.21, pp.4158-4163, 2003.
DOI : 10.1039/B304283A

. Lichtenberger, Review of electrochemical studies of complexes containing the Fe 2 S 2 core characteristic of [FeFe]-hydrogenases including catalysis by these complexes of the reduction of acids to form dihydrogen, J. Organomet. Chem, pp.694-2681, 2009.

F. Quentel, G. Passard, and F. Gloaguen, Electrochemical hydrogen production in aqueous micellar solution by a diiron benzenedithiolate complex relevant to [FeFe] hydrogenases, Energy & Environmental Science, vol.133, issue.7, pp.7757-7761, 2012.
DOI : 10.1039/c2ee21531d

F. Quentel, G. Passard, and F. Gloaguen, A Binuclear Iron-Thiolate Catalyst for Electrochemical Hydrogen Production in Aqueous Micellar Solution, Chemistry - A European Journal, vol.74, issue.42, pp.13473-13479, 2012.
DOI : 10.1002/chem.201201884

X. Li, M. Wang, L. Chen, X. Wang, J. Dong et al., Photocatalytic water reduction and study of the formation of Fe I Fe 0 species in diiron catalyst sytems, ChemSusChem, pp.5-913, 2012.

F. Wang, W. Wang, H. Wang, G. Si, C. Tung et al., Artificial Photosynthetic Systems Based on [FeFe]-Hydrogenase Mimics: the Road to High Efficiency for Light-Driven Hydrogen Evolution, ACS Catalysis, vol.2, issue.3, pp.407-416, 2012.
DOI : 10.1021/cs200458b

J. F. Capon, F. Gloaguen, F. Y. Pétillon, P. Schollhammer, and J. Talarmin, Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases, Coordination Chemistry Reviews, vol.253, issue.9-10, pp.253-1476, 2009.
DOI : 10.1016/j.ccr.2008.10.020

J. F. Capon, F. Gloaguen, P. Schollhammer, and J. Talarmin, Electrochemical proton reduction by thiolate-bridged hexacarbonyldiiron clusters, Journal of Electroanalytical Chemistry, vol.566, issue.2, pp.241-247, 2004.
DOI : 10.1016/j.jelechem.2003.11.032

J. F. Capon, F. Gloaguen, P. Schollhammer, and J. Talarmin, Activation of proton by the twoelectron reduction of a di-iron organometallic complex, J. Electroanal. Chem, pp.595-642, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00700128

F. Gloaguen, D. Morvan, J. F. Capon, P. Schollhammer, and J. Talarmin, Electrochemical proton reduction at mild potentials by monosubstituted diiron organometallic complexes bearing a benzenedithiolate bridge, Journal of Electroanalytical Chemistry, vol.603, issue.1, pp.603-618, 2007.
DOI : 10.1016/j.jelechem.2007.02.003

. Talarmin, Effect of electron-withdrawing dithiolate bridge on the electron-transfer steps in diiron molecules related to [2Fe] H subsite of the [FeFe]-hydrogenases, Inorg. Chem, pp.49-2496, 2010.

P. Y. Orain, J. F. Capon, F. Gloaguen, P. Schollhammer, and J. Talarmin, Tuning of electron transfer in diiron azo-bridged complexes relevant to hydrogenases, International Journal of Hydrogen Energy, vol.35, issue.19, pp.35-10797, 2010.
DOI : 10.1016/j.ijhydene.2010.02.111

L. Chen, M. Wang, F. Gloaguen, D. Zheng, P. Zhang et al., Multielectron-Transfer Templates via Consecutive Two-Electron Transformations: Iron-Sulfur Complexes Relevant to Biological Enzymes, Chemistry - A European Journal, vol.38, issue.207, pp.18-13968, 2012.
DOI : 10.1002/chem.201201326

D. H. Zakai, R. S. Evans, D. L. Glass, and . Lichtenberger, Hydrogen generation from weak acids: Electrochemical and computational studies of a diiron hydrogenase mimic, J. Am. Chem

D. Streich, Y. Astuti, M. Orlandi, L. Schwartz, R. Lomoth et al., High-Turnover Photochemical Hydrogen Production Catalyzed by a Model Complex of the [FeFe]-Hydrogenase Active Site, Chemistry - A European Journal, vol.11, issue.1, pp.16-60, 2010.
DOI : 10.1002/chem.200902489

A. K. Vannucci, S. Wang, G. S. Nichol, D. L. Lichtenberger, D. H. Evans et al., Electronic and geometric effects of phosphatriazaadamantane ligands on the catalytic activity of an [FeFe] hydrogenase inspired complex, Dalton Trans., vol.46, issue.239, pp.39-3050, 2010.
DOI : 10.1039/B921067A

B. Kumar, M. Beyler, C. P. Kubiak, and S. Ott, Photoelectrochemical Hydrogen Generation by an [FeFe] Hydrogenase Active Site Mimic at a p-Type Silicon/Molecular Electrocatalyst Junction, Chemistry - A European Journal, vol.110, issue.5, pp.18-1295, 2012.
DOI : 10.1002/chem.201102860

Y. Liu, T. Yen, Y. Tseng, C. Hu, G. Lee et al., Electron Delocalization from the Fullerene Attachment to the Diiron Core within the Active-Site Mimics of [FeFe]Hydrogenase, Inorganic Chemistry, vol.51, issue.11, pp.51-5997, 2012.
DOI : 10.1021/ic3007298

D. Morvan, J. F. Capon, F. Gloaguen, P. Schollhammer, and J. Talarmin, Electrochemical Synthesis of Mono- and Disubstituted Diiron Dithiolate Complexes as Models for the Active Site of Iron-Only Hydrogenases, European Journal of Inorganic Chemistry, vol.32, issue.32, pp.5062-5068, 2007.
DOI : 10.1002/ejic.200700598

G. A. Felton, B. J. Petro, R. S. Glass, D. L. Lichtenberger, and D. H. Evans, One-to twoelectron reduction of an [FeFe]-hydrogenase active site mimic: The critical role of fluxionality of the [2Fe2S] core, J. Am. Chem. Soc, pp.131-11290, 2009.

V. Fourmond, P. Jacques, M. Fontecave, and V. Artero, H2 evolution and molecular electrocatalysts: Determination of overpotentials and effect of homoconjugation
URL : https://hal.archives-ouvertes.fr/hal-01069160

G. A. Felton, R. S. Glass, D. L. Lichtenberger, and D. H. Evans, Iron-only hydrogenase mimics. Thermodynamic aspects of the use of electrochemistry to evaluate catalytic efficiency for hydrogen generation, Inorg. Chem, pp.45-9181, 2006.

J. A. Widegren and R. G. Finke, A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions, Journal of Molecular Catalysis A: Chemical, vol.198, issue.1-2, pp.198-317, 2003.
DOI : 10.1016/S1381-1169(02)00728-8

V. Artero and M. Fontecave, Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis?, Chem. Soc. Rev., vol.134, issue.6, 2013.
DOI : 10.1038/NCHEM.1481

URL : https://hal.archives-ouvertes.fr/hal-01069158

R. S. Nicholson and I. Shain, Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems., Analytical Chemistry, vol.36, issue.4, pp.36-706, 1964.
DOI : 10.1021/ac60210a007

A. J. Sathrum and C. P. Kubiak, Kinetics and Limiting Current Densities of Homogeneous and Heterogeneous Electrocatalysts, The Journal of Physical Chemistry Letters, vol.2, pp.2372-2379, 2011.
DOI : 10.1021/jz2008227

M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. Dubois, and D. L. Dubois, A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production, Science, vol.333, issue.6044, pp.333-863, 2011.
DOI : 10.1126/science.1205864

M. J. Rose, H. B. Gray, and J. R. Winkler, Hydrogen generation catalyzed by fluorinated diglyoxim-iron complexes at low overpotentials, J. Am. Chem. Soc, pp.134-8310, 2012.

V. S. Thoi, H. I. Karunadasa, Y. Surendranath, J. R. Long, and C. J. Chang, Electrochemical generation of hydrogen from acetic acid using a molecular molybdenum???oxo catalyst, Energy & Environmental Science, vol.50, issue.7, pp.7762-7770, 2012.
DOI : 10.1039/c2ee21519e

J. M. Savéant, Elements of molecular and biomolecular electrochemistry: An electrochemical approach to electron transfer chemistry, 2006.
DOI : 10.1002/0471758078

C. Costentin, S. Drouet, M. Robert, and J. Savéant, Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis, J. Am. Chem. Soc, pp.134-11235, 2012.

S. Kozuch and J. M. Martin, ???Turning Over??? Definitions in Catalytic Cycles, ACS Catalysis, vol.2, issue.12, pp.2787-2794, 2012.
DOI : 10.1021/cs3005264

. Hots, Bottom: plot of the current enhancement I cat /I p as function of the concentration of HOTs at a scan rate of 0.5 V s ? 1 (squares) and 5 V s ? 1 (circles), respectively, p.20

. Fig, Left: background-corrected electrocatalytic responses of 2 (top) and 1 (bottom) in the presence of 12 molar equiv. of HOTs derived from CVs recorded at 0.5 V s ? 1 . Right: foot-ofthe-wave analyses. Linear fits (dotted line) to the data show that the electrocatalytic responses deviate from ideal behavior at I/I p > 1