V. Marteinsson, J. Birrien, A. Reysenbach, M. Vernet, D. Marie et al., Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent, International Journal of Systematic Bacteriology, vol.49, issue.2, pp.351-35900207713, 1999.
DOI : 10.1099/00207713-49-2-351

X. Zeng, X. Zhang, L. Jiang, A. K. Jebbar, M. Shao et al., Palaeococcus pacificus sp. nov., an archaeon from deep-sea hydrothermal sediment, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.63, issue.Pt 6, pp.2155-2159, 2012.
DOI : 10.1099/ijs.0.044487-0

URL : https://hal.archives-ouvertes.fr/hal-00808545

K. Takai, A. Sugai, T. Itoh, and K. Horikoshi, Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.50, issue.2, pp.489-500, 2000.
DOI : 10.1099/00207713-50-2-489

K. Alain, V. Marteinsson, M. Miroshnichenko, E. Bonch-osmolovskaya, D. Prieur et al., Marinitoga piezophila sp. nov., a rodshaped , thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent, Int. J. Syst. Evol. Microbiol, vol.52, pp.1331-1339, 2002.

K. Takai, K. Nakamura, T. Toki, U. Tsunogai, M. Miyazaki et al., Cell proliferation at 122??C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation, Proceedings of the National Academy of Sciences, vol.105, issue.31, pp.10949-10954, 2008.
DOI : 10.1073/pnas.0712334105

J. Birrien, X. Zeng, M. Jebbar, M. Cambon-bonavita, J. Querellou et al., Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.61, issue.12, pp.2827-2831, 2011.
DOI : 10.1099/ijs.0.024653-0

URL : https://hal.archives-ouvertes.fr/hal-00609785

X. Zeng, J. Birrien, Y. Fouquet, G. Cherkashov, M. Jebbar et al., Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life, The ISME Journal, vol.50, issue.7, pp.873-876, 2009.
DOI : 10.1038/ismej.2009.21

URL : https://hal.archives-ouvertes.fr/hal-00406501

A. Slesarev, K. Mezhevaya, K. Makarova, N. Polushin, O. Shcherbinina et al., The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens, Proc. Natl. Acad, 2002.
DOI : 10.1073/pnas.032671499

P. Vannier, V. Marteinsson, O. Fridjonsson, P. Oger, and M. Jebbar, Complete Genome Sequence of the Hyperthermophilic, Piezophilic, Heterotrophic, and Carboxydotrophic Archaeon Thermococcus barophilus MP, Journal of Bacteriology, vol.193, issue.6, pp.1481-1482, 2011.
DOI : 10.1128/JB.01490-10

URL : https://hal.archives-ouvertes.fr/insu-00683928

X. Jun, L. Lupeng, X. Minjuan, P. Oger, W. Fengping et al., Complete Genome Sequence of the Obligate Piezophilic Hyperthermophilic Archaeon Pyrococcus yayanosii CH1, Journal of Bacteriology, vol.193, issue.16, pp.4297-429805345, 2011.
DOI : 10.1128/JB.05345-11

URL : https://hal.archives-ouvertes.fr/insu-00683340

S. Lucas, J. Han, A. Lapidus, J. Cheng, L. Goodwin et al., Complete Genome Sequence of the Thermophilic, Piezophilic, Heterotrophic Bacterium Marinitoga piezophila KA3, Journal of Bacteriology, vol.194, issue.21, pp.5974-597501430, 2012.
DOI : 10.1128/JB.01430-12

URL : https://hal.archives-ouvertes.fr/hal-00773159

T. Sato, T. Fukui, H. Atomi, and T. Imanaka, Improved and Versatile Transformation System Allowing Multiple Genetic Manipulations of the Hyperthermophilic Archaeon Thermococcus kodakaraensis, Applied and Environmental Microbiology, vol.71, issue.7, pp.3889-3899, 2005.
DOI : 10.1128/AEM.71.7.3889-3899.2005

R. Matsumi, K. Manabe, T. Fukui, H. Atomi, and T. Imanaka, Disruption of a Sugar Transporter Gene Cluster in a Hyperthermophilic Archaeon Using a Host-Marker System Based on Antibiotic Resistance, Journal of Bacteriology, vol.189, issue.7, pp.2683-269101692, 2007.
DOI : 10.1128/JB.01692-06

J. Farkas, K. Stirrett, G. Lipscomb, W. Nixon, R. Scott et al., Recombinogenic Properties of Pyrococcus furiosus Strain COM1 Enable Rapid Selection of Targeted Mutants, Applied and Environmental Microbiology, vol.78, issue.13, pp.4669-467600936, 2012.
DOI : 10.1128/AEM.00936-12

T. Hileman and T. Santangelo, Genetics Techniques for Thermococcus kodakarensis, Frontiers in Microbiology, vol.3, 0195.
DOI : 10.3389/fmicb.2012.00195

J. Cabrera, J. Bolds, P. Shields, C. Havel, and A. Watson, Isoprenoid synthesis in Halobacterium halobium, J. Biol. Chem, vol.261, pp.3578-3583, 1986.

T. Santangelo, L. Cubonová, J. Reeve, and L. Cubonova, Thermococcus kodakarensis Genetics: TK1827-Encoded ??-Glycosidase, New Positive-Selection Protocol, and Targeted and Repetitive Deletion Technology, Applied and Environmental Microbiology, vol.76, issue.4, pp.1044-1052, 2010.
DOI : 10.1128/AEM.02497-09

T. Sato, T. Fukui, H. Atomi, and T. Imanaka, Targeted Gene Disruption by Homologous Recombination in the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1, Journal of Bacteriology, vol.185, issue.1, pp.210-220, 2003.
DOI : 10.1128/JB.185.1.210-220.2003

T. Santangelo, L. Cubonova, and J. Reeve, Shuttle Vector Expression in Thermococcus kodakaraensis: Contributions of cis Elements to Protein Synthesis in a Hyperthermophilic Archaeon, Applied and Environmental Microbiology, vol.74, issue.10, pp.3099-3104, 2008.
DOI : 10.1128/AEM.00305-08

H. Krummel, B. Saiki, and R. , A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions, Nucleic Acids Res, vol.16, pp.7351-7367, 1988.

R. Horton, Z. Cai, S. Ho, and L. Pease, Gene Splicing by Overlap Extension: Tailor-Made Genes Using the Polymerase Chain Reaction, BioTechniques, vol.54, issue.3, pp.528-535, 1990.
DOI : 10.2144/000114017

G. Bertani and L. Baresi, Genetic transformation in the methanogen Methanococcus voltae PS., Journal of Bacteriology, vol.169, issue.6, pp.2730-2738, 1987.
DOI : 10.1128/jb.169.6.2730-2738.1987

N. Soler, A. Justome, S. Quevillon-cheruel, F. Lorieux, L. Cam et al., The rolling-circle plasmid pTN1 from the hyperthermophilic archaeon Thermococcus nautilus, Molecular Microbiology, vol.16, issue.2, pp.357-370, 2007.
DOI : 10.1128/JB.184.9.2561-2566.2002

URL : https://hal.archives-ouvertes.fr/hal-00192504

T. Zheng, Q. Huang, C. Zhang, J. Ni, Q. She et al., Development of a Simvastatin Selection Marker for a Hyperthermophilic Acidophile, Sulfolobus islandicus, Applied and Environmental Microbiology, vol.78, issue.2, pp.568-57406095, 2012.
DOI : 10.1128/AEM.06095-11

C. Zhang and R. Whitaker, A broadly applicable gene knockout system for the thermoacidophilic archaeon Sulfolobus islandicus based on simvastatin selection, Microbiology, vol.158, issue.Pt_6, pp.1513-1522, 2012.
DOI : 10.1099/mic.0.058289-0

I. Waege, G. Schmid, S. Thumann, M. Thomm, and W. Hausner, Shuttle Vector-Based Transformation System for Pyrococcus furiosus, Applied and Environmental Microbiology, vol.76, issue.10, pp.3308-3313, 2010.
DOI : 10.1128/AEM.01951-09

D. Wendoloski, C. Ferrer, and M. Smith, A new simvastatin (mevinolin)-resistance marker from Haloarcula hispanica and a new Haloferax volcanii strain cured of plasmid pHV2, Microbiology, vol.147, issue.4, pp.959-964, 2001.
DOI : 10.1099/00221287-147-4-959

G. Lipscomb, K. Stirrett, G. Schut, F. Yang, F. Jenney et al., Natural Competence in the Hyperthermophilic Archaeon Pyrococcus furiosus Facilitates Genetic Manipulation: Construction of Markerless Deletions of Genes Encoding the Two Cytoplasmic Hydrogenases, Applied and Environmental Microbiology, vol.77, issue.7, pp.2232-2238, 2011.
DOI : 10.1128/AEM.02624-10

M. Kreuzer, K. Schmutzler, I. Waege, M. Thomm, and W. Hausner, Genetic engineering of Pyrococcus furiosus to use chitin as a carbon source, BMC Biotechnology, vol.13, issue.1, 2013.
DOI : 10.1007/s00792-012-0482-8