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Abstract. The response of the phytoplanktonic community
(primary production and algal biomass) to contrasted Sa-
haran dust events (wet and dry deposition) was studied in
the framework of the DUNE (“a DUst experiment in a low-
Nutrient, low-chlorophyll Ecosystem”) project. We simu-
lated realistic dust deposition events (10 g m−2) into large
mesocosms (52 m3). Three distinct dust addition experiments
were conducted in June 2008 (DUNE-1-P: simulation of a
wet deposition; DUNE-1-Q: simulation of a dry deposition)
and 2010 (DUNE-2-R1 and DUNE-2-R2: simulation of two
successive wet depositions) in the northwestern oligotrophic
Mediterranean Sea. No changes in primary production (PP)
and chlorophylla concentrations (Chla) were observed after
a dry deposition event, while a wet deposition event resulted
in a rapid (24 h after dust addition), strong (up to 2.4-fold)
and long (at least a week in duration) increase in PP and
Chl a. We show that, in addition to being a source of dis-
solved inorganic phosphorus (DIP), simulated wet deposition
events were also a significant source of nitrate (NO−

3 ) (net in-
creases up to+9.8 µM NO−

3 at 0.1 m in depth) to the nutrient-
depleted surface waters, due to cloud processes and mixing

with anthropogenic species such as HNO3. The dry deposi-
tion event was shown to be a negligible source of NO−

3 . By
transiently increasing DIP and NO−3 concentrations in N–P
starved surface waters, wet deposition of Saharan dust was
able to relieve the potential N or NP co-limitation of the phy-
toplanktonic activity. Due to the higher input of NO−

3 relative
to DIP, and taking into account the stimulation of the bio-
logical activity, a wet deposition event resulted in a strong
increase in the NO−3 /DIP ratio, from initially less than 6, to
over 150 at the end of the DUNE-2-R1 experiment, suggest-
ing a switch from an initial N or NP co-limitation towards
a severe P limitation. We also show that the contribution of
new production to PP strongly increased after wet dust de-
position events, from initially 15 % to 60–70 % 24 h after
seeding, indicating a switch from a regenerated-production
based system to a new-production based system. DUNE ex-
periments show that wet and dry dust deposition events in-
duce contrasting responses of the phytoplanktonic commu-
nity due to differences in the atmospheric supply of bioavail-
able new nutrients. Our results from original mesocosm ex-
periments demonstrate that atmospheric dust wet deposition
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greatly influences primary productivity and algal biomass in
LNLC environments through changes in the nutrient stocks,
and alters the NO−3 /DIP ratio, leading to a switch in the nu-
trient limitation of the phytoplanktonic activity.

1 Introduction

The primary nutrients that limit marine phytoplankton pro-
ductivity include nitrogen (N), phosphorus (P) and iron (Fe).
Mineral dust deposition from arid regions provides a source
of each of these nutrients to the open ocean surface waters,
and can have important effects on marine biogeochemical cy-
cles and potentially affect the global climate (e.g., Baker et
al., 2003; Jickells et al., 2005; Mahowald et al., 2008). Re-
searchers have suggested that Fe delivered by mineral dust
could have stimulated oceanic productivity and may help ex-
plain the glacial–interglacial atmosphericpCO2 transition
(Martin, 1990; Falkowski, 1997; Ridgwell and Watson, 2002;
Mahowald et al., 2006). While the impact of Fe on produc-
tivity has been recognized in high-nutrient low-chlorophyll
(HNLC) oceanic regions (Boyd et al., 2000; de Baar et al.,
2005, Boyd et al., 2007; Blain et al., 2007), the ecologi-
cal and biogeochemical effects of aeolian dust deposition of
macro- (N, P) and micro-nutrients (Fe) in oligotrophic low-
nutrient low-chlorophyll (LNLC) environments remain less
explored and poorly understood, although LNLC regions
represent 60 % of the global ocean (Longhurst et al., 1995),
and over 50 % of the global oceanic carbon export (Emerson
et al., 1997). The mineral dust can be transported thousands
of miles across the Atlantic and Pacific oceans and deliver
large quantities of nutrients to the LNLC Atlantic and Pacific
gyres, which in turn could play a significant role in stimulat-
ing primary production (Bishop et al., 2002; Johnson et al.,
2003; Duarte et al., 2006; Maranon et al., 2010; Franchy et
al., 2013), potentially increasing the efficiency of the biolog-
ical pump in the sequestration of atmospheric CO2.

The Mediterranean Sea is a typical LNLC region, partic-
ularly well adapted to tackling the question of the plank-
tonic response to atmospheric nutrient inputs. The Mediter-
ranean Sea is an oligotrophic quasi-enclosed basin that re-
ceives a noticeable flux of dust, mainly derived from the Sa-
hara Desert, in the form of strong pulses (Guerzoni et al.
1999; Guieu et al., 2010a). After the seasonal phytoplank-
tonic bloom during spring, the surface mixed layer is isolated
from deeper waters by a strong thermal stratification, and be-
comes N and P depleted (Marty et al., 2002; Pulido-Villena
et al., 2010), leading to low primary productivity and phy-
toplanktonic biomass (Moutin and Raimbault, 2002; Marty
and Chiaverini, 2002; Bosc et al., 2004; Lopez-Sandoval
et al., 2011). During the whole stratification period, atmo-
spheric inputs are therefore the main source of allochtonous
nutrients to the oligotrophic surface waters. By bringing new
macro-nutrients (e.g., Herut et al, 1999; Ridame and Guieu,

2002; Pulido-Villena et al., 2010; Markaki et al., 2010) and
Fe (e.g., Bonnet and Guieu, 2006; Wuttig et al., 2013) to
the Mediterranean surface waters, Saharan dust deposition is
strongly suspected of playing a key role in the control of pri-
mary production. During the BOUM (Biogeochemistry from
the Oligotrophic to the Ultra-Oligotrophic Mediterranean)
cruise in the summer of 2008, nutrient/dust additions in mi-
crocosms showed that primary production and chlorophylla

were N or NP co-limited in the western Mediterranean Sea
(Tanaka et al., 2011), and that Saharan dust stimulated pri-
mary production (Ternon et al., 2011).

The goal of the DUNE project was to estimate the im-
pact of Saharan dust events on an LNLC ecosystem like
the Mediterranean Sea from virus to zooplankton over a pe-
riod of one week, and to evaluate the biogeochemical im-
plications associated with this forcing (Guieu et al., 2010b,
Guieu et al., 2014a). Due to the logistical difficulties of in-
vestigating in situ natural dust events, and due to the in-
herent limitations of microcosm experiments, new experi-
mental approaches have been developed in the framework
of the DUNE project. This allowed for the first time the
performance of realistic dust seeding in in situ large metal-
free mesocosms (52 m3), and the following of the impact
on chemistry, biology and particle dynamics, taking into ac-
count the vertical dimension. In this context, the present
study is focused on the response of the phytoplanktonic com-
munity to contrasted Saharan dust events (wet and dry depo-
sition). Here, we quantified the changes in in situ concentra-
tions of dissolved inorganic nitrogen, as well as the changes
in the primary production and algal biomass after simulated
dust deposition events. This study is complementary to the
companion paper of Giovagnetti et al. (2013), focusing on
changes in the structure and composition of the phytoplank-
tonic community as well as in the ecophysiological state of
the phytoplanktonic cells after two successive simulated wet
deposition events (DUNE-2-R).

2 Material and methods

2.1 Experimental design and dust characterization

Three distinct experimental dust additions to large meso-
cosms were conducted in June 2008 and from June to
July 2010 in the northwestern Mediterranean Sea, in the
framework of the DUNE (“a DUst experiment in a low-
Nutrient, low-chlorophyll Ecosystem”) project (http://www.
obs-vlfr.fr/LOV/DUNE/index.html). More precisely, the ex-
periments were realized in Elbo Bay, located in the Natural
Preservation Area of Scandola (8.554◦ E, 42.374°N), which
is representative of the LNLC conditions of the open western
Mediterranean Sea (Guieu et al., 2010b, 2014a). The meso-
cosm experiment design and the accuracy of the strategy are
described fully in Guieu et al. (2010b). Briefly, six meso-
cosms (height 12.5 m, diameter 2.3 m, surface area 4.15 m2,
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and volume 52 m3) entirely designed in plastic were de-
ployed. The bags were made of polyethylene mixed with
vinyl acetate, and the holding structure of PVC and polyethy-
lene. The anchors were screwed into the sea floor at 25–30 m
in depth. The mesocosms are closed systems, which prevent
lateral advection and allow process studies in the vertical di-
mension over time. Sediment traps (a 250 mL HDPE bottle)
were screwed to the bases of the mesocosms for the collec-
tion of the exported material, and were changed every day
(DUNE-2-R) or every two days (DUNE-1-P, DUNE-1-P-Q).
Three replicate mesocosms (D1, D2 and D3, hereafter re-
ferred to as “Dust-meso”) were amended with 41.5 g of min-
eral dust, reproducing a high but environmentally realistic at-
mospheric dust deposition of 10 g m−2 (Guieu et al., 2010b).
The dust used in the three seeding experiments resulted from
the fine fraction (< 20 µm) of Saharan soils collected in south-
ern Tunisia, which is a Saharan aerosol source area for the
western Mediterranean Sea (details in Guieu et al., 2010b
and Desboeufs, et al., 2014). To simulate a Saharan depo-
sition event, we did not use collected rainwater or aerosols,
but instead we used the fine fraction of soils as an analog to
Saharan aerosols, in order to obtain enough quantity of the
same material. The amount of dust per mesocosm required
was 41.5 g, which resulted in a total of 125 g of dust for the
three replicates for only one seeding experiment. Such a large
amount of particles could not be collected from airborne dust
in the vicinity of the experimental area. Moreover, Saharan
dust events are sporadic, and collecting rainwater in the field
at the time of the mesocosm experiment would have intro-
duced large uncertainties into the feasibility of the project.
Three other mesocosms served as controls (C1, C2 and C3,
hereafter referred to as “Control-meso”). The sampling ses-
sion took place every morning at the same time over the dura-
tion of the experiments. Each day, three different depths (0.1,
5 and 10 m in depth) were sampled in the six mesocosms
using a trace metal clean system of permanent PVC tubing
placed at the center of the bags and connected to a Teflon
pump, as described in Guieu et al. (2010b). Additional depths
(2.5 and 12.5 m) were sampled in two dust mesocosms dur-
ing DUNE-2-R for nutrient determination. Every 48 h, sea-
water was also collected outside the mesocosms (hereafter
referred to as ‘out’) at the same depths, in order to test the
representativeness of the data between Control-meso and out.

June 2008 experiments

Two distinct seeding experiments were conducted with two
types of dust. In the first one (10–18 June 2008, hereafter re-
ferred to as “DUNE-1-P”), the dust used was previously sub-
jected to physico-chemical transformations through conden-
sation/evaporation cycles that involved HNO3 and H2SO4 re-
producing the photochemistry, the gradients in pH, and ionic
strength during cloud processing of dust particles (Desboeufs
et al, 2001, and details in Guieu et al., 2010b). Indeed, Saha-

ran dust collected in the Mediterranean atmosphere is usu-
ally mixed with organic and inorganic material, such as sul-
fate and nitrate, due to cloud processing during atmospheric
transport (Putaud et al., 2004; Crumeyrolle et al., 2008). This
evapocondensed dust (hereafter referred to as “EC dust”)
contained on average 0.045± 0.015 % of P, 2.31± 0.04 % of
Fe and 1.19± 0.05 % of N, in weight (Table 1). The seed-
ing of the dust mesocosms in the DUNE-1-P experiment was
performed with the EC dust mixed with 2 L of ultrapure wa-
ter in order to mimic a wet deposition event, as (i) the mixing
of dust with anthropogenic components is a process that oc-
curs mostly during cloud processes, and (ii) dissolution pro-
cesses occur mainly in rainwater in the case of a wet deposi-
tion event.

In the second experiment (20–27 June 2008, hereafter re-
ferred to as “DUNE-1-Q”), non-processed dust was used
(hereafter referred to as “non-EC dust”), and contained on
average 0.044± 0.009 % of P, 2.28± 0.19 % of Fe, and
0.11± 0.01 % of N (Table 1). The seeding of the dust meso-
cosms in the DUNE-1-Q experiment was conducted with
the non-EC dust mixed with 2 L of unfiltered surface sea-
water in order to mimic a dry deposition event, as (i) the
untreated dust is representative of dry-deposited dust in the
Mediterranean Sea, and (ii) dissolution processes occur in
seawater in the case of a dry-type deposition event. Indeed,
the internal mixing between dust and polluted species is not
systematically observed in the Mediterranean area (Marconi
et al., 2014). Kandler et al. (2007) show that the mixing
is below 2 % for the transported dust particles larger than
5 µm, and up to 5 % for particles larger than 1 µm, i.e., for
the particles preferentially removed by dry deposition. The
size distribution and the chemical composition of our un-
treated dust are consistent with the characteristics of long-
range transported dust (Guieu et al., 2010b; Formenti et al.,
2011; de Leeuw et al., 2014).

June–July 2010 experiments

Two successive seeding experiments (26 June–2 July 2010,
hereafter referred to as “DUNE-2-R1”, and 3–9 July 2010,
hereafter referred to as “DUNE-2-R2”; see details in Guieu et
al., 2014a) were performed with the same amount of EC dust
and with the same deposition setup as in DUNE-1-P, simu-
lating a wet deposition event. The dust was characterized by
an average content of 0.055± 0.003 % P, 2.26± 0.03 % Fe
and 1.36± 0.09 % N (Table 1; see details in Desboeufs et al.,
2014). During the first seeding (DUNE-2-R1), the compar-
ison of the data between the Control-meso and Dust-meso
gives information on the effect of one wet deposition event
(as for DUNE-1-P), while during DUNE-2-R2, the compari-
son between the Control-meso and Dust-meso gives informa-
tion on the effect of the combination of two successive wet
deposition events.
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Table 1.Particulate P, Fe and N (%, in weight) in the EC and non-EC dust used during DUNE (from Ridame et al., 2013). Means that were
not significantly different for a given chemical element between the different experiments (p > 0.05) are labeled with the same letter (in
parentheses).

DUNE-1-P DUNE-1-Q DUNE-2-R (R1, R2)
10–18 June 2008 20–27 June 2008 26 June–9 July 2010

Dust treatment Evapocondensed Non-processed Evapocondensed
Simulated deposition Wet Dry Wet
P (%) 0.045± 0.015a (A) 0.044± 0.009a (A) 0.055± 0.003b (A)
Fe (%) 2.31± 0.04a (B) 2.28± 0.19a (B) 2.26± 0.03b (B)
N (%) 1.19± 0.05a (C) 0.11± 0.01a (D) 1.36± 0.09b (E)

a Guieu et al. (2010b).
b Desboeufs et al. (2014).

P, Fe, N contents of the dust

The particulate P and Fe contents of the EC dust (DUNE-1-P
and DUNE-2-R) and non-EC dust (DUNE-1-Q) were simi-
lar (p > 0.05, Table 1). Due to the simulation of cloud water
processes that involved HNO3, the N content of EC dust was
about 10-fold higher in comparison with the non-EC dust
(Table 1; Guieu et al., 2010b, 2014a). Small differences of the
N content in EC dust used in the 2008 and 2010 experiments
(1.19± 0.05 % and 1.36± 0.09 %) were observed (details in
Guieu et al., 2014a).

2.2 Primary production

All materials were previously acid washed (HCl Suprapur)
following trace metal clean procedures. Before sampling,
bottles were rinsed three times with the sampled seawater.
One sample per depth of unfiltered seawater was collected
using the trace metal clean sampling system, in the morn-
ing at two depths (0.1 and 5 m in depth) during DUNE-
1-P and DUNE-1-Q, and at 5 m in depth during DUNE-2-
R, for the determination of primary production (PP). Sam-
ples were collected in the six mesocosms and outside the
mesocosms before and after dust seeding. CO2 fixation rates
were determined using the13C-tracer addition method (e.g.,
Slawyk et al., 1977). During DUNE-1-P and DUNE-1-Q,
2.5 mL of NaH13CO3 (99 %, Eurisotop) were added to 4.5 L
polycarbonate bottles for13C uptake determination, while
during DUNE-2-R, 1.5 mL of NaH13CO3 were added to
2.3 L polycarbonate bottles (15N2 tracer was also added
in order to determine simultaneously N2 fixation rates us-
ing the dual13C/15N2 isotopic labeling technique; see Ri-
dame et al., 2013). Prior to DUNE-2-R, intercomparison of
PP rates measured in both 2.3 and 4.5 L incubated volumes
showed coefficients of variation (CV) lower than 15 % (un-
published data), which was on the same order of magnitude
as those found between triplicate mesocosms (CV < 17 %).
Immediately after sampling,13C tracer was added to obtain
a final enrichment of about 9 atom % excess, and each bottle
was shaken well. The atom % excess of the dissolved inor-

ganic carbon (DIC) was calculated by using measured DIC
concentrations at the LOCEAN laboratory (see the detailed
protocol in Corbière et al., 2007). Then, the13C-amended
bottles were incubated under in situ conditions on a moor-
ing line outside the mesocosms for 24 h at the correspond-
ing sampling depths (0.1 m and 5 m in depth). Incubations
were terminated the following morning by filtration onto pre-
combusted 25 mm GF/F filters (0.7 µM nominal porosity).
Sample filters were stored at−20◦C and dried at 40◦C for
48 h before analysis. Concentrations of carbon (C) and ni-
trogen (N) in particulate matter and13C enrichment were
quantified with an isotope ratio mass spectrometer (IRMS,
Delta plus, ThermoFisher Scientific, Bremen, Germany) cou-
pled with a C: N analyzer (Flash EA, ThermoFisher Scien-
tific) via a type III interface. The standard deviations were
0.009 µmol L−1 and 0.004 µmol L−1 for particulate carbon
and nitrogen, respectively, and 0.0002 atom % for13C en-
richment. From these measurements, the C: N molar ratios
in the particulate matter were calculated.

For DUNE-1 (P and Q), PP measured at 0.1 and 5 m in
depth was integrated over the mesocosm depth (12.5 m). We
assume that the PP at 5 m in depth was similar to that at
12.5 m in depth, based on the similarity of the chlorophyll
a concentrations (Chla) measured at 5 and 10 m in depth
in the Control-meso and Dust-meso over the experiments
(p > 0.05). Besides, on some selected sampling days, PP
was measured at the three depths (0.1, 5 and 10 m in depth).
Depth-integrated PP calculated from measured data at the
three depths was similar (−4 %) to that extrapolated from
data measured at 0.1 and 5 m (assuming that the PP at 12.5 m
in depth was similar to that measured at 5 m in depth).

For DUNE-2-R, PP measured at 5 m in depth was in-
tegrated assuming a uniform distribution over the entire
mesocosm. Over DUNE-2-R1, Chla was similar between
the three sampling depths (p > 0.05). During DUNE-2-R2,
Chl a at 5 and 10 m in depth was similar (p > 0.05), while
Chl a in surface waters was slightly higher than deeper
(+ ∼ 30 %, p < 0.05) at the three sampling times. Also,
measurements of PP at the three depths at some selected
sampling times showed that depth-integrated PP calculated
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from measured data at 0.1, 5 and 10 m in depth was not sig-
nificantly different (+4 %) from that extrapolated from data
measured at 5 m in depth (assuming a homogeneous distri-
bution over the mesocosm depth).

2.3 Chlorophyll a

Two liters of seawater from 0.1, 5 and 10 m in depth were
collected on a daily scale and then filtered onto 25 mm GF/F
filters. After 24 h extraction in 90 % acetone, at 4◦C and
in the dark, the fluorescence of Chla was measured on a
Turner Trilogy Laboratory fluorometer (Strickland and Par-
sons, 1972). The Chla concentrations measured at the three
sampling depths were integrated over the mesocosm depth
(12.5 m).

2.4 Nutrient concentrations

Twenty milliliters of filtered seawater (< 0.2 µm, Sartobran
cartridge filters) from 0.1, 5 and 10 m in depth were collected
in acid-washed high-density polyethylene (HDPE) bottles
and frozen until analysis. Nitrate (NO−3 ) and nitrite (NO−

2 )

were analyzed according to classical methods using the au-
tomated colorimetric technique as described in Grasshoff et
al. (1999), on a QuAAtro Continuous Flow Analyzer (SEAL
Analytical). The precision of the measurements was± 30 nM
and± 40 nM for NO−

3 and NO−
2 , respectively. The limits of

detection, defined as three times the standard deviation of the
blank, were 30 nM and 10 nM for NO−3 and NO−

2 , respec-
tively.

Dissolved inorganic phosphorus (DIP) concentrations pre-
sented in Pulido-Villena et al. (2010, 2014) were analyzed
immediately after collection on 0.2 µm filtered seawater by
spectrophotometry using a long waveguide capillary cell
(LWCC); the detection limit was 2 nM (details in Pulido-
Villena et al., 2010, 2014). The concentration of dissolved
Fe (DFe) (< 0.2 µm) was measured by flow injection analysis
with online preconcentration and chemiluminescence detec-
tion (FIA-CL); the detection limit was 10 pM (details in Wa-
gener et al., 2010). These data are presented in Wagener et
al. (2010) and Wuttig et al. (2013).

2.5 Dissolution experiments under abiotic conditions

Both types of Saharan dust (EC and non-EC dust) used dur-
ing the DUNE-1-P and DUNE-1-Q experiments were stud-
ied to quantify under abiotic conditions the amount of in-
organic nitrogen (nitrate+ nitrite: NOx; ammonium: NH+4 )

potentially released in the Dust-meso after seedings. This
work was complementary to the in vitro dissolution ex-
periments performed for the quantification of DFe (Wa-
gener et al., 2010) and DIP (Pulido-Villena et al., 2010) re-
leased from dust. All experiments were performed in a clean
room under a laminar flow hood using trace metal clean
techniques, and all materials were previously acid washed
(5 % HCl).

Dissolution experiments were conducted in sterile artifi-
cial seawater (Chen et al., 1996). For each type of dust,
a stock solution of 20 mg dust L−1 was made in artificial
seawater, and quickly (less than 2 min to minimize the in-
stantaneous dissolution processes) after homogenization, in-
creasing amounts of this stock solution were added to ar-
tificial seawater to reach a range of nine concentrations
from 0 to 20 mg dust L−1: 0, 0.01, 0.1, 0.5, 1, 3, 5, 10 and
20 mg dust L−1. Each condition was performed in triplicate
in 250 mL Nalgene® polycarbonate bottles. After dust in-
oculation, bottles were placed on an agitation table in the
dark for 3 and 24 h. At each time point, 125 mL of each
sample were filtered on washed (0.5 % HCl and rinsed three
times with ultrapure water) Nucleopore® polycarbonate fil-
ters (0.2 µm porosity) under a 200 mbar vacuum. The filtra-
tion was performed to remove Saharan dust from the liq-
uid phase and to stop dissolution processes. The filtrate from
each sample was subsampled to measure the concentrations
of NOx and NH+

4 . Samples for NOx were stored in Nalgene®

HDPE vials in the dark at 4◦C for 2 days, and NH+4 samples
were analyzed immediately. Briefly, the NOx concentration
was analyzed with an AutoAnalyzer3 Digital Colorimeter
(Bran Luebbe) according to the method described by Aminot
and Kérouel (2007) (detection limit of 20 nmol L−1). For
NH+

4 concentrations, 40 mL of filtrate were recovered in a
Schott flask (Duran) and analyzed by the method described
in Holmes et al. (1999) with a Turner Trilogy Laboratory flu-
orometer (detection limit of 11 nmol L−1). Due to salt con-
tamination, the initial concentrations of NOx and NH+

4 in the
artificial seawater were 0.19± 0.02 µmol L−1 (n = 12) and
1.46± 0.12 µmol L−1 (n = 7), respectively.

2.6 Statistical analysis

Means of Chla, PP, and NO−3 concentrations in the Dust- and
Control-meso as well as the NOx concentrations in the disso-
lution experiments were compared using a repeated measure
ANOVA and the Fisher least significant difference (LSD)
means comparison test (α = 0.05). When assumptions for
ANOVA were not respected, means were compared using a
Kruskal–Wallis test and a post hoc Dunn test in XLstat soft-
ware.

3 Results

3.1 Characteristics of the seawater

Statistical analysis of biological and chemical parameters in
Table 2 showed no significant differences between Control-
meso, Dust-meso and out before seeding for all experiments
(Guieu et al., 2010b; 2014a). Chla (0.07–0.11 µg L−1) and
PP (3.89–5.35 mg C m−3 d−1) were initially low, and were
slightly higher in DUNE-1-P relative to DUNE-1-Q and
DUNE-2-R (p < 0.05, Table 2). The picophytoplanktonic
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Table 2. Initial temperature and biological and chemical properties of seawater before seeding in experiments DUNE-1-P, DUNE-1-Q and
DUNE-2-R (average in the Dust-meso, Control-meso and out). DIP: dissolved inorganic phosphorus; dl: detection limit (30 nM for NO−

3 );

nd: no data. Data for temperature, chlorophylla, DIP, NO−
3 and DFe are the means at 0.1, 5 and 10 m in depth. Data for primary production

and the C: N ratio are the means at 0.1 and 5 m in depth for the DUNE-1-P and DUNE-1-Q experiments, and at 5 m in depth for the DUNE-
2-R experiment. Means that were not significantly different for a given parameter between the different experiments (p > 0.05) are labeled
with the same letter (in parentheses).

DUNE-1-P DUNE-1-Q DUNE-2-R

Temperature (◦C) 19.6± 0.7 (A) 20.3± 0.5 (B) 21.2± 0.4 (C)
Chlorophylla (µg L−1) 0.11± 0.03 (A) 0.08± 0.02 (B) 0.07± 0.02 (B)
Primary production, mg C m−3 d−1 5.35± 1.11 (A) 4.16± 0.38 (B) 3.89± 0.46 (B)
C : N (mol : mol) 7.8± 0.5 (A) 7.3± 0.5 (B) 7.5± 0.6 (A, B)
DIP, nM 5± 2a (A) 2 ± 0b (B) 5± 3c (A)
NO−

3 , nM nd nd < dl
DFe, nM 2.4± 0.3d (A) 2.3± 0.3e (A) 3.3± 0.8f (B)

a Pulido-Villena et al. (2010).
b E. Pulido-Villena, personal communication (2013).
c Pulido-Villena et al. (2014).
d Wagener et al. (2010).
e T. Wagener, personal communication (2013).
f Wuttig et al. (2013).

biomass (Chla < 3 µm) accounted for about 70 % of the
total phytoplanktonic biomass before the DUNE-1-Q and
DUNE-2-R seedings (C. Brunet, personal communication,
2013; Giovagnetti et al., 2013) (no data for DUNE-1-P).
Synechococcus was the most abundant phytoplanktonic or-
ganism in the < 3 µm size fraction before all the dust addi-
tions (unpublished data; Giovagnetti et al., 2013). The ini-
tial C : N molar ratios in the particulate fraction, ranging
from 7.3 to 7.8, were slightly higher than the Redfield ra-
tio of 6.6 (106 : 16). The water column was initially DIP de-
pleted (2–5 nM), with concentrations lower in the DUNE-
1-Q experiment (2 nM) than in DUNE-1-P and DUNE-2-R
(5 nM; p < 0.05). The initial NO−

3 and NO−
2 concentrations

were below the detection limit (< 30 nM) in the DUNE-R ex-
periment. By assuming a maximum initial NO−

3 concentra-
tion of 30 nM in DUNE-2-R, it should lead to a maximum
NO−

3 /DIP ratio of 6. Due to analytical problems, NO−
3 con-

centrations were not available for the DUNE-1-P and DUNE-
1-Q experiments, but are strongly suspected to be below the
detection limit before seeding, as shown in DUNE-2-R and in
surface waters of the northwestern Mediterranean Sea during
stratification (Marty et al., 2002; Pujo-Pay et al., 2011). The
initial DFe concentration was higher for DUNE-2-R (3.3 nM)
relative to DUNE-1-P and DUNE-1-Q (∼ 2.3 nM,p < 0.05,
Table 2).

The initial seawater temperatures over the water column
were greater than 19◦C (Table 2). During DUNE-1-P, the
temperature was lower than during the other ones (Guieu et
al., 2014a). Over the duration of this experiment, the tem-
perature in the water column of the mesocosms was ho-
mogenous and stable (meanT = 19.8± 0.5◦C, Guieu et
al., 2010b), while over the course of DUNE-1-Q, tempera-
tures increased rapidly (up to 26.0◦C at the surface), leading

to a strongly marked thermal stratification typical of sum-
mer conditions (mean1T0–10 m= 3.6◦C between 21 and 27
June; Guieu et al., 2014a). Over DUNE-2-R1, changes in
temperature were representative of the transition period be-
tween spring (low stratification) and summer (strong strat-
ification) conditions. While at the beginning of the second
seeding (DUNE-2-R2), stratification was well established, a
destratification followed by a restratification was then ob-
served (details in Guieu et al., 2014a). The highest tempera-
ture was recorded during DUNE-2-R2 (up to 27.3◦C at the
surface). Photosynthetically available radiation (PAR) was
measured at the subsurface of the mesocosms during DUNE-
2-R (Giovagnetti et al., 2013; Guieu et al., 2014a). Over
the 13 days of the experiment, PAR was high, with maxi-
mum values of∼ 900 µmol photons m−2 s−1 at the subsur-
face. During DUNE-1-P, the percentage of sunshine duration
over the whole daylight time was lower than during DUNE-
1-Q, where the values were close to the maximum (Guieu et
al., 2014a), so it is likely that PAR values increased between
the P and Q experiments.

3.2 Changes in the nutrient concentrations
after seeding

After the DUNE-2-R1 and DUNE-2-R2 seedings, strong in-
creases in NO−3 concentrations at the surface of the Dust-
meso were observed relative to the Control-meso, where
NO−

3 concentrations were lower than 30 nM (Fig. 1a). Ten
hours after the first seeding, the NO−

3 concentrations in the
surface waters reached 3.3± 0.3 µM, and then decreased to
0.5± 0.1 µM at the end of R1 (day 6). Five hours after the
second seeding, an additional increase in the NO−

3 concen-
tration (+9.8 µM relative to day 6 in the Dust-meso) was
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Figure 1. (A) Mean NO−
3 concentration (µmol L−1) during the

DUNE-2-R experiment in the Dust-meso at the surface (0.1 m in
depth). The dotted lines represent the time of the dust seedings. Data
represent the average and standard deviations of the three replicate
mesocosms. NO−3 concentrations were under the detection limit
(< 30 nM) in the Control-meso and outside over the duration of the
experiment, as well as in the Dust-meso before seeding (day 0) and
at the end of the experiment (day 13).(B) Integrated NO−3 (mmol

N m−2) over the depth of the mesocosm (12.5 m) in the Dust-meso
during the DUNE-2-R experiment. Assuming a maximum NO−

3
concentration of 30 nM in the Control-meso, the integrated NO−

3
should be lower than 0.4 mmol N m−2 (red line).

detected at the surface, leading to NO−
3 concentrations of

10.3± 2.4 µM. At the end of R2, the NO−3 concentration
in the Dust-meso decreased down to the detection limit.
Lower increases in the NO−3 concentration were recorded at
5 and 10 m in depth in the Dust-meso (maximum of∼ 1 µM)
(Supplement Fig. S1). NO−3 and NO−

2 concentrations in the
Control-meso were below the detection limit at all three
depths over the 13-day duration of the experiment. No
change in the NO−2 concentration was observed in the Dust-
meso after both seedings. Depth-integrated NO−

3 concentra-
tions showed that the stock increased to 10.2 mmol NO−

3 m−2

a few hours after the R1 seeding, and then decreased to a
value significantly higher relative to the Control-meso at the
end of the R1 (6.3 mmol NO−3 m−2, day 6) (Fig. 1b). The sec-
ond seeding led to an additional increase in the NO−

3 stock
of about+10 mmol NO−

3 m−2 relative to day 6 in the Dust-
meso. The NO−3 stock was at a maximum a few hours after
the second seeding,∼ 16 mmol NO−

3 m−2, representing the
cumulated effect of the two seedings, and then dropped to
undetectable value at the end of the experiment.

After the simulated wet deposition in DUNE-1-P and
DUNE-2-R1, Pulido-Villena et al. (2010, 2014) showed tran-
sient increases in the DIP concentrations a few hours after
seeding (up to+12 nM at the surface), resulting in net in-
creases in the DIP stock (from+ 21 to+ 24 µmol DIP m−2)

in the Dust-meso relative to the Control-meso. Twenty-four
hours after these seedings, DIP stock dropped to initial con-
centrations (no significant difference compared to the con-
trols), and remained constant until the end of the experi-
ments. Over DUNE-2-R2, the dust addition led to a new in-
crease in the DIP stock (+54–104 µmol DIP m−2 in the Dust-
meso relative to the Control-meso) that was higher than after
the first one. The DIP stock remained stable and significantly
higher relative to the controls until the end of the experiment
(Pulido-Villena et al., 2014). No change in the DIP concen-
tration was recorded in the Dust-meso after the DUNE-1-Q
seeding simulating a dry deposition event (Pulido-Villena,
personal communication, 2013).

3.3 Response of the phytoplanktonic community to
dust seeding

Depth-integrated Chla and PP showed no significant differ-
ences between out and the Control-meso during the whole
DUNE-1-P and DUNE-1-Q experiments (Figs. 2 and 3).
From day 4 in the DUNE-2-R experiment, integrated Chla

and PP increased in out relative to the Control-meso (Fig. 4)
as bacterial abundance did (Pulido-Villena et al., 2014). Over
the duration of the three experiments, integrated Chla and PP
were homogeneous and remained stable in the Control-meso,
as shown by the low coefficients of variation (CV < 20 %).
The mean C: N molar ratio in the particulate matter did not
change significantly (p > 0.05) in the Dust-meso after all the
seedings (P, Q, R) relative to the Control-meso (Supplement
Fig. S2). The average C: N ratios were 7.5± 0.4, 7.6± 0.6
and 7.8± 0.6, respectively, over the duration of the DUNE-
1-P, DUNE-1-Q and DUNE-2-R experiments.

Response of the phytoplanktonic community to a wet
deposition event

In the DUNE-1-P experiment, the EC dust addition led to a
1.6-fold increase (p < 0.05) in the integrated Chla relative
to the Control-meso 24 h after the seeding, and to an average
1.9-fold increase over the duration of the experiment (Fig. 2).
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Figure 2. Mean integrated chlorophylla (Chl a) in mg m−2

(top panel) and mean integrated primary production (PP) in mg
C m−2 d−1 (bottom panel) over mesocosms during the DUNE-1-
P experiment in the Control-meso (black dot), Dust-meso (orange
dot) and out (grey dot). The dotted line represents the time of the
dust seeding. Data in the Control-meso and Dust-meso represent the
average and standard deviations of the three replicate mesocosms.
Means in the Dust-meso that were significantly different from the
Control-meso (p < 0.05) are labeled with the * symbol.

The increase in Chla was observed for the entire duration of
the experiment, as shown by the 1.9-fold increase (p < 0.05)
detected 7 days after the seeding. The increase in Chla was
observed at all the sampling depths (Supplement Fig. S3),
with similar relative changes (p > 0.05). Like Chl a, inte-
grated PP strongly increased after the seeding during 7 days
(1.8-fold on average) compared to the unamended controls
(p < 0.05, Fig. 2). Twenty-four hours after the seeding, PP
in the Dust-meso was about twice higher in comparison with
the Control-meso. Relative increases in PP at the surface and
at 5 m in depth were similar (p > 0.05, Supplement Fig. S4).

Figure 3. Mean integrated chlorophylla (Chl a) in mg m−2

(top panel) and mean integrated primary production (PP) in
mg C m−2 d−1 (bottom panel) over mesocosms during the DUNE-
1-Q experiment in the Control-meso (black dot), Dust-meso (orange
dot) and out (grey dot). The dotted line represents the time of the
dust seeding. Data in the Control-meso and Dust-meso represent the
average and standard deviations of the three replicate mesocosms.

Response of the phytoplanktonic community to a dry
deposition event

Over the duration of the DUNE-1-Q experiment, integrated
Chl a and PP did not significantly increase after the addi-
tion of non-EC dust throughout the water column (p > 0.05;
Figs. 3, S5, and S6). A slight stimulation of PP (1.2-fold,
p < 0.05) was detected in the Dust-meso at 5 m in depth,
48 h after dust addition (Supplement Fig. S6).

Response of the phytoplanktonic community to two
successive wet deposition events

In the DUNE-2-R experiment, the first seeding (R1) led to
averaged increases in integrated Chla and PP of x1.9 and
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Figure 4. Mean integrated chlorophylla (Chl a) in mg m−2 (top
panel) and mean integrated primary production (PP) in mg C m−2

d−1 (bottom panel) over mesocosms during the DUNE-2-R1 and
DUNE-2-R2 experiments in the Control-meso (black dot), Dust-
meso (orange dot) and out (grey dot). The dotted lines represent the
time of the dust seedings. Data in the Control-meso and Dust-meso
represent the average and standard deviations of the three replicate
mesocosms. Means in the Dust-meso that were significantly differ-
ent from the Control-meso (p < 0.05) are labeled with the * sym-
bol.

x2.3 relative to the Control-meso over the duration of DUNE-
2-R1 (Fig. 4, Supplement Figs. S7 and S8). Six days after the
first seeding, Chla and PP in the Dust-meso were still at least
twice as high (p < 0.05) as in the Control-meso. Twenty-
four hours after the second seeding, an additional x1.8 stimu-
lation of PP was observed. The combination of the two seed-
ings induced a x2.4 increase in both integrated Chla and PP
relative to the Control-meso over the duration of DUNE-2-
R2 (Fig. 4, Supplement Figs. S7 and S8). Over the 13-day
duration of the DUNE-2-R experiment, the Chla increase
in the Dust-meso was observed over the entire mesocosm
(Supplement Fig. S7). At the end of the experiment (day 13),

Figure 5. Box plot of the relative changes in integrated Chla

(Chl adust/Chl acontrol) and PP (PPdust/PPcontrol) over the dura-
tion of the DUNE-1-P, DUNE-2-R1 and DUNE-2-R2 experiments.
Means that were not significantly different between the different
parameters and experiments (p > 0.05) are labeled with the same
letter.

Chla and PP in the Dust-meso were twice as high (p < 0.05)
as that in the unamended controls.

Comparison of the relative changes between DUNE-1-P,
DUNE-2-R1 and DUNE-2-R2 experiments

The mean relative Chla change (RC, Dust/Control) was
similar after the wet deposition event simulated in the
DUNE-1-P and DUNE-2-R1 experiments (RCChla = 1.9,
p > 0.05, Fig. 5), while the RC in PP was higher during
DUNE-2-R1 (RCPP= 2.3) than during DUNE-1-P (RCPP=

1.8, p < 0.05). The combination of two wet deposition
events (DUNE-2-R2) resulted in a higher relative Chla

change (RCChla = 2.4, p < 0.05) compared to that induced
by the first seeding (R1, RCChla = 1.9). For PP, the rela-
tive change was similar over DUNE-2-R1 (first seeding)
and over DUNE-2-R2 (combination of two seedings) (p >

0.05; RCPP= 2.3 and 2.4, respectively; Fig. 5). The rela-
tive changes in Chla and PP were similar in the DUNE-1-
P experiment (p > 0.05; RCChla = 1.9 and RCPP= 1.8), as
well as over DUNE-2-R2 (p > 0.05;RCChla = RCPP= 2.4),
while over DUNE-2-R1, the relative increase in PP (RCPP=

2.3) was higher than that in Chla (RCChla = 1.9).

3.4 Nitrogen solubility associated with dust under
abiotic conditions

Additions of both EC and non-EC dust did not signif-
icantly change (p > 0.05) the NH+

4 concentrations com-
pared to the unamended artificial seawater (data not shown).
Significant increases (p < 0.05) in the NOx concentrations
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Figure 6. Results of abiotic dissolution experiments:(A) 1NOx
([NOx]after the introduction of dust−[NOx]initial ) in µM relative to the
amount of dust (EC and non-EC dust) introduced in seawater for
contact times of 3 and 24 h, and(B) percentage of NOx released
from EC dust (NOx % = 1NOx × 100/Ntotal dust) as a function of
the dust amount introduced in seawater for contact times of 3 and
24 h. Data represent the average and standard deviations of the three
replicates.

were observed concomitantly with increasing EC dust con-
centrations for both contact times (Fig. 6a). No significant
differences in the NOx concentrations (p > 0.05) released
from EC dust have been found between 3 and 24 h con-
tact times. NOx concentrations increased linearly (r2 = 0.99)
with the increasing EC dust concentration, up to 17 µM for
20 mg dust L−1. The percentages of dissolution (1NOx ×

100/Ntot) reached 100 % from EC dust concentrations higher
than 0.5 mg L−1, at both time points (Fig. 6b). Additions of
non-EC dust did not significantly increase (p > 0.05) NOx
concentrations relative to the unamended artificial seawater
(Fig. 6a).

4 Discussion

The initial characteristics of seawater in all experiments
were typical of LNLC environments, as depicted by low
nutrient concentrations (DIP, NO−3 ), low primary produc-
tion and low phytoplanktonic biomass. These values were
consistent with previous measurements in the surface wa-
ters of the open western Mediterranean Sea during strati-
fication periods (Moutin and Raimbault, 2002; Bosc et al.,
2004; Lopez-Sandoval et al., 2011; Pujo-Pay et al., 2011) and
at the DYFAMED (DYnamique des Flux Atmosphériques
en MEDiterranée) times series station (http://www.obs-vlfr.
fr/sodyf/; Marty and Chiaverini, 2002; Marty et al., 2002,
2008; Pulido-Villena et al., 2010) located in the northwest-
ern Mediterranean Sea (43◦25′ N, 07◦52′ E).

4.1 Contrasted responses of the phytoplanktonic
community to dust deposition events

Wet and dry dust deposition events induced contrasted re-
sponses of the phytoplanktonic community. The dust seed-
ing experiments mimicking wet deposition events (P, R) in-
duced significant stimulation of both Chla and PP, from 1.8-
to 2.4-fold (Fig. 5), while no changes were observed after
the seeding simulating a dry deposition event (Q). The re-
sponse of the phytoplankton to a wet deposition event was
(1) fast, as shown by significant increases in PP and algal
biomass 24 h after dust addition, (2) long, as depicted by in-
creases recorded during at least a week after seeding, and (3)
homogeneous over the water column, as illustrated by the
stimulation of Chla throughout the mesocosms. Despite the
strong increases in biomass and PP following the wet deposi-
tion events, the values remained typical of oligotrophic sys-
tems (maxima of 0.23 µg Chla L−1 and 13.1 mg C m−3 d−1

in the Dust-meso). PP and Chla in the Dust-meso were
higher over DUNE-2-R2 (combination of two seedings) than
over DUNE-2-R1 (first seeding) (Fig. 4). The cumulated ef-
fect of the two seedings observed over DUNE-2-R2 led to a
higher Chla increase (R2, RC= 2.4) relative to the first one
(R1, RC= 1.9, Fig. 5). During the first dust addition, 65 % of
the increase in total phytoplanktonic biomass was indeed due
to picophytoplankton (< 3 µm), while over DUNE-2-R2, the
nanophytoplankton and microphytoplankton (> 3 µm) con-
tributed to about 50 % of the Chla increase (Giovagnetti
et al., 2013). The rapid response of picophytoplankton af-
ter the R1 seeding fits their dominance and ability to out-
compete bigger cells under LNLC and high light conditions,
by having a higher efficiency in physiological processes in
resource-limited habitats when compared to the larger ones
(Raven et al., 2005). Surprisingly, no increase in Chla was
observed after the simulated dry deposition event (DUNE-
1-Q experiment, non-EC dust). Previous results from bioas-
say experiments in the western Mediterranean Sea during
stratification periods have also shown that the addition of
the untreated Saharan dust analog (simulated dry deposition
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event of 2.5–12.5 g m−2) did not induce any significant Chla

change (Ridame 2001, Bonnet et al., 2005). Despite the lack
of a detectable response of Chla after the DUNE-1-Q seed-
ing, the POC export was higher in the Dust-meso (8± 3
mg m−2 d−1) compared to the controls (2± 1 mg m−2 d−1)

24 h after addition (Desboeufs et al., 2014; Guieu et al.,
2014b). This could be explained by potential top–down ef-
fects through grazing pressure, which could have regulated
the phytoplanktonic biomass. Slight increases in PP (+20 %
at 5 m in depth,p < 0.05, Supplement Fig. S6) and inSyne-
chococcus abundance (+30 % at 5 m in depth,p < 0.05, un-
published data) were recorded after the DUNE-1-Q seeding.
The abundance of copepods representing the main contribu-
tor to zooplankton also increased slightly in the Dust-meso at
the end of the DUNE-1-Q experiment relative to the Control-
meso (L. Stemmann, unpublished data, 2013). The increase
in the POC export without an associated increase in the bio-
genic stock could also be explained by the lithogenic ballast
effect through aggregation and/or DOC sorption processes
on the settling particles (Desboeufs et al., 2014; Bressac et
al., 2014).

4.2 Impact of the pathway of deposition on the nutrient
dynamics

Differences in the atmospheric supply of bioavailable new
nutrients depending on the pathway of deposition (wet or
dry) may explain the variability in the response of the phy-
toplanktonic community (Table 3). In the DUNE-1-P and
DUNE-2-R experiments, the seeding of the mesocosms was
performed with the EC dust mixed with ultrapure water in
order to mimic a wet deposition event (and thus cloud pro-
cesses, including the mixing of particles with compounds
from anthropogenic activities such as HNO3; Desboeufs et
al., 2014), whereas in DUNE-1-Q, non-EC dust mixed with
seawater was used to simulate a dry-type deposition event.

DIP

The total content of P was similar in EC and non-EC dust
(Table 1). Through in vitro dissolution experiments, both
types of dust have been evidenced as a source of DIP (Pulido-
Villena, unpublished data; Pulido-Villena et al., 2010; Des-
boeufs, personal communication, 2013; Aghnatios et al.,
2014). Nevertheless, the dissolution of P associated with Sa-
haran dust has been shown to be about two- to five-fold
higher, for an equivalent dust concentration, in ultrapure
water (wet deposition) than in seawater (dry deposition),
likely due to a lower pH in ultrapure water (Ridame and
Guieu, 2002). Indeed, in situ measurements showed signif-
icant increases in the DIP stock after simulated wet deposi-
tion events (Pulido-Villena et al., 2010, 2014) and no changes
after the simulated dry deposition event (Pulido-Villena, per-
sonal communication, 2013), while abiotic dissolution exper-

iments in seawater have shown a release of DIP from non-EC
dust (+3 nM for a particulate dust concentration of 1 mg L−1

after a contact time of 6 h; Pulido-Villena, unpublished data).
The low amount of DIP released after the dry deposition
event could have been used quickly by the biological activ-
ity, explaining why no increase in DIP concentrations was
recorded after the DUNE-1-Q seeding. Indeed, the dry de-
position event in DUNE-1-Q induced a strong stimulation of
N2 fixation (Ridame et al., 2013) and bacterial respiration
(Guieu et al., 2014b) (Table 3).

NO−

3

The N content of the EC dust was about ten-fold higher com-
pared to the non-EC dust, resulting in significant changes
in the atmospheric supply of dissolved inorganic nitrogen
(DIN), depending on the pathway of deposition. Abiotic dis-
solution experiments showed that EC dust – mimicking Sa-
haran dust wet deposition (DUNE-1-P, DUNE-2-R) – was a
significant source of NOx, whereas non-EC dust – mimick-
ing Saharan dust dry deposition (DUNE-1-Q) – was a negli-
gible source of NOx. Due to the simulation of cloud water
processes that involved HNO3, dissolution of EC dust re-
leased NOx as NO−

3 . The release of NOx by EC dust un-
der in vitro conditions was confirmed by in situ increases
in NO−

3 concentrations throughout the Dust-meso after the
DUNE-2-R1 and DUNE-2-R2 wet deposition events (Fig. 1,
Table 3). Assuming a homogeneous distribution of the EC
dust within the Dust-meso, this would lead to a particulate
dust concentration of about 1 mg L−1, resulting in a poten-
tial input of 0.9 µM NO−

3 (Fig. 6a). The vertical profiles of
NO−

3 in the mesocosms indicate a maximum net increase
in NO−

3 of +9.8 µM at the surface soon after the R2 seed-
ing (relative to day 6 in the Dust-meso) (Fig. 1a), and re-
veal a non-homogeneous vertical distribution of the mineral
particles in the Dust-meso. This was confirmed by optical
measurements by Bressac et al. (2012, 2014), and by the
vertical distribution of crustal elements as aluminum (Des-
boeufs et al., 2014). Based on the dissolution results (Fig. 6),
a complete dissolution of NO−3 associated with EC dust is
expected within 3 hr after the additions, resulting in theoret-
ical inputs of atmospheric new N of 8.5, 9.7 and 9.7 mmol
NO−

3 m−2 in the Dust-meso, respectively, for DUNE-1-P,
DUNE-2-R1 and DUNE-2-R2. Over DUNE-2-R, the suc-
cessive net increases in the NO−

3 stock just after seedings
(R1: +10.2 mmol NO−

3 m−2 and R2:+10 mmol NO−
3 m−2;

Fig. 1b) are on the same order of magnitude as the input of
atmospheric NO−3 based on total dissolution of N associated
with EC dust (9.7 mmol NO−3 m−2). In addition to the atmo-
spheric input of new DIN, N2 fixation could be a significant
source of new N in N-depleted waters, as strong stimulations
of N2 fixation (up to x5.3, Table 3) were detected after all the
DUNE seedings (Ridame et al., 2013). The increases in the
N2 fixation rates led to net inputs of new N of+39,+15 and
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Table 3.Summary of the biological and chemical changes observed after the DUNE seedings in the Dust-meso relative to the Control-meso.
Results from: this study; Ridame et al. (2013); Pulido-Villena et al. (2010, 2014); Pulido-Villena, personal communication (2013); Wagener
et al. (2010); T. Wagener, personal communication, 2013; and Wuttig et al. (2013).

DUNE-1-P DUNE-1-Q DUNE-2-R1 DUNE-2-R2
Wet Dry Wet Wet

PP↑ PP↔ PP↑ PP↑

Chl a ↑ Chl a ↔ Chl a ↑ Chl a ↑

N2 fixation↑ N2 fixation↑ N2 fixation↑ N2 fixation↑

Bacterial respiration↑ Bacterial respiration↑ Bacterial respiration↑ Bacterial respiration↑
DIP ↑ DIP ↔ DIP ↑ DIP ↑

NOx ↑ ∗ NOx ↔ ∗ NOx ↑ NOx ↑

DFe↓ DFe↓ DFe↓ DFe↑

∗ From abiotic dissolution experiments; this study.

+22 µmol N m−2, respectively, after the DUNE-1-P, DUNE-
2-R1 and DUNE-2-R2 seedings over the duration of the ex-
periments (Ridame et al., 2013), which are negligible com-
pared to the estimated supply of new N from the wet depo-
sition events (from 8.5 to 9.7 mmol NO−3 m−2). The increase
in NO−

3 concentrations observed after simulated wet deposi-
tion events could thus not be explained by the increase in N2
fixation activity. Over DUNE-1-Q, N2 fixation could be the
main source of external N (x3.3–5.2 increases in N2 fixation
after dust addition, in Ridame et al., 2013), as dry deposition
of non-EC dust was shown to be a negligible source of NO−

3 .
The slight increase in PP 48 h after the DUNE-1-Q seeding
(at 5 m in depth,+20 %), converted to N with a C: N ratio
of 7.6 (measured during DUNE-1-Q), required an input of
∼ 8 nmol N L−1 d−1, which was higher than the input from
increased N2 fixation (∼ 1–2 nmol N L−1 d−1).

DFe

EC and non-EC dust have a similar Fe content (Table 1),
and represent a source of DFe to surface waters (Wagener et
al., 2010; Desboeufs, personal communication, 2013; Agh-
natios et al., 2014). Results of dissolution experiments of
both types of dust in artificial rainwater did not show any
significant differences in DFe concentrations released for
equivalent dust concentrations and contact times (Desboeufs,
personal communication, 2013; Aghnatios et al., 2014). De-
spite these similarities, unexpected changes in the DFe con-
centrations were observed after the DUNE seedings by Wa-
gener et al. (2010) and Wuttig et al. (2013) (Table 3). DFe
concentrations dropped to about 1.5–2 nM after the DUNE-
1-P, DUNE-1-Q and DUNE-2-R1 seedings, due to DFe scav-
enging on settling dust particles in the Dust-meso (T. Wa-
gener, personal communication, 2013; Wagener et al., 2010;
Wuttig et al., 2013), while a transient increase in the DFe
concentrations in surface waters of about 2 nM was observed
after the DUNE-2-R2 seeding (Wuttig et al., 2013).

The simulated wet deposition events induced significant
increases in the DIP and NO−3 stocks in the mesocosms, as
well as significant stimulations of PP and Chla (Table 3).
On the opposite end, after the simulated dry deposition event,
no significant changes in DIP (and likely in NO−

3 concentra-
tions) as in Chla and PP were detected in the mesocosms
(Table 3). As a consequence, the pathway of atmospheric
deposition clearly controls the response of the phytoplank-
tonic community (biomass and productivity) through the dif-
ferences in the new nutrient supply. As wet deposition is the
main pathway of Saharan dust deposition over the western
Mediterranean Sea (e.g., Loÿe-Pilot and Martin 1996), atmo-
spheric deposition is probably the main source of new nitro-
gen (NO−

3 ) (Markaki et al., 2010) and new phosphorus (DIP)
to the open Mediterranean surface waters during stratifica-
tion periods.

4.3 Nutrient factors controlling primary
production and biogeochemical consequences

Iron

Before seedings, DFe concentrations ranged from 2.3 to
3.3 nM in the tested waters (Table 2). After the DUNE-1-P,
DUNE-1-Q and DUNE-2-R1 seedings, DFe concentrations
dropped to about 1.5–2 nM, while primary production was
either stimulated (DUNE-1-P, DUNE-2-R1) or unchanged
(DUNE-1-Q) (Table 3). Wagener et al. (2010) showed that
enhanced biological activity cannot explain by itself the ob-
served decrease in DFe after the wet deposition event simu-
lated during DUNE-1-P. Instead, the sink of DFe was likely
due to scavenging on settling dust particles and aggregates in
the Dust-meso. Despite opposite changes in DFe concentra-
tion after the DUNE-2-R1 (decrease) and DUNE-2-R2 (in-
crease) seedings (Table 3), primary production increased af-
ter both additions with a similar magnitude (Fig. 5). This is
evidence that, during the DUNE experiments, the bioavail-
ability of Fe was not a controlling factor of the growth and
CO2 fixing activity of the phytoplanktonic community. This
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Figure 7. Averaged temporal changes in the variation (Dust-
Control) in NO−

3 (red dots) and DIP stocks (blue dots)(A) after
the DUNE-2 R1 seeding and(B) after the DUNE-2 R2 seeding.

is in good agreement with previous results of Bonnet et al.
(2005) during summer in the northwestern Mediterranean
Sea.

Nitrogen and phosphorus

The non-stimulation of PP after the dry deposition event sug-
gests that the phytoplanktonic community may be limited by
N and P, or be NP co-limited. In the DUNE-2-R experiment,
the estimated NO−3 /DIP ratio before seeding (< 6) was lower
than the Redfield ratio (16/1), suggesting a N limitation of the
phytoplanktonic activity. As the DIP concentration was also
initially extremely low (5 nM, Table 2), PP could likely be
co-limited by both N and P, as previously shown during sum-
mer in the northwestern Mediterranean Sea (Tanaka et al.,
2011). By increasing DIP and NO−3 concentrations in P- and
N-depleted surface waters, simulated wet deposition events
relieve the potential N or NP co-limitation of the phytoplank-
tonic activity. The wet deposition events induced significant

changes in the biogeochemical conditions of the tested wa-
ters by modifying the NO−3 and DIP dynamics and by alter-
ing the ambient NO−3 /DIP ratio (Fig. 7). Due to the higher
input of NO−

3 relative to DIP, wet deposition events (P, R1,
R2) are characterized by a NO−

3 /DIP ratio much higher than
the Redfield ratio, resulting in increases in the NO−

3 /DIP ra-
tio in the Dust-meso just after seeding. Studies have previ-
ously shown that the atmospheric input to the Mediterranean
Sea displays a high N : P ratio for dissolved inorganic forms
(Sandroni et al., 2007; Markaki et al., 2010).

DUNE-1-P and DUNE-2-R1

Both experiments showed similar patterns in the response
of the phytoplanktonic activity (PP) to a wet event, as well
as in the evolution of the DIP concentration (and likely of
the NO−

3 concentration). As the NO−3 stock in the Dust-meso
was higher than in the controls at the end of R1, and as the
DIP stock was similar to the controls, the NO−

3 /DIP ratio
strongly increased from less than 6 (initially) to greater than
150 at the end of the R1 experiment (Fig. 7a), suggesting
a switch from an initial N limitation or NP co-limitation of
the phytoplanktonic activity towards a severe P limitation un-
til the end of R1. The net increase in integrated PP (PPdust–
PPcontrol) 24 h after seeding was converted to P using a C: P
molar ratio of 245 : 1 determined in the particulate organic
matter in surface waters of the northwestern Mediterranean
Sea during stratification (Tanaka et al., 2011), and to N using
a C: N ratio measured during DUNE. The phytoplanktonic P
requirement (+25 and+18 µmol DIP m−2 for DUNE-1-P
and DUNE-2-R1 at day 1) was on the same order of mag-
nitude as the net increase in the DIP stock in the Dust-meso
(+ 21 and+ 24 µmol DIP m−2 for DUNE-1-P and DUNE-
2-R1), while the phytoplanktonic N requirement was much
lower than the increase in the NO−

3 stock. The stimulation of
PP 24 h after the DUNE-1-P and DUNE-2-R1 seedings can
explain the rapid DIP depletion (Fig. 7a). Bacterial respira-
tion was also stimulated after these seedings (Pulido-Villena,
2010, 2014), suggesting a competition for the DIP uptake
between heterotrophic bacteria and autotrophic phytoplank-
ton, as already reported during microcosm experiments in
the tropical Atlantic and the Mediterranean Sea (Thingstad
et al., 2005; Maranon et al., 2010). As the∼ 2-fold increase
in PP and Chla in the Dust-meso lasted for a week, it sug-
gests a rapid remineralization of DIP by heterotrophic bacte-
ria and/or the uptake of dissolved organic phosphorus (DOP)
as a source of P through the alkaline phosphatase enzyme
(Beardall et al., 2001). The PP integrated for the duration
of the experiments and the estimated nutrient requirements
showed that the atmospheric input of NO−

3 largely exceeds
the phytoplanktonic N demand, which may explain the NO−

3
accumulation at the end of the experiment.
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DUNE-2-R2

Over DUNE-2-R2, the temporal evolution of NO−
3 and DIP

stocks was different relative to that observed over DUNE-2-
R1 (Fig. 7). The second seeding (R2) permitted an additional
supply of new nitrogen and phosphorus into the mesocosms
(Fig. 7). Then, due to the biological activity, the NO−

3 stock
in the Dust-meso decreased to undetectable values at the end
of R2, while the DIP stock remained much higher than in the
controls. This led to a NO−3 /DIP ratio much lower than 16:1,
indicating a potential N limitation of the phytoplanktonic ac-
tivity at the end of the experiment. Over DUNE-2-R2, Gio-
vagnetti et al. (2013) showed a change in the size structure
of the phytoplanktonic community towards a larger domi-
nance of big cells (> 3 µm). Larger-sized cells need further
nutrient supply in order to be able to adjust their physiology
and compete for resource acquisition and biomass increase
(Raven et al., 2005; Irwin et al., 2006). After the DUNE-
2-R2 seeding, the nutrient (NO−3 , DIP) concentrations were
indeed higher than after the first seeding, which can explain
why the response of larger cells was mainly relevant over
DUNE-2-R2. This change in the size structure of the phyto-
planktonic community is consistent with a higher NO−

3 con-
sumption (Giovagnetti et al., 2013), as large cells have higher
half-saturation constants (Aksnes and Egge, 1991; Hein et
al., 1995) and higher cellular metabolic requirements than
small cells (Grover, 1991).

The DIP stock surprisingly remained quite stable and sig-
nificantly much higher relative to the controls until the end
of R2, despite twice as high rates of PP in the Dust-meso
than in the Control-meso. This does not imply that the in-
put of new DIP was not used by phytoplankton, but rather
that the rate of DIP consumption through PP was compen-
sated for by an equivalent rate of DIP production, thus main-
taining a quite constant DIP stock. It is unlikely that the in-
crease in PP was sustained by DOP, as the use of DOP by
phytoplankton is more energy consuming, through the syn-
thesis of the alkaline phosphatase enzyme. We thus hypoth-
esize that the atmospheric DIP was assimilated by phyto-
plankton to sustain increases in biomass and PP, and that het-
erotrophic remineralization of organic phosphorus kept DIP
stock quite stable through high rates of P recycling. This
would imply that during DUNE-2-R2, heterotrophic bacte-
ria did not compete with phytoplankton for the P resource,
as is suspected for DUNE-2-R1. As suggested by Pulido-
Villena et al. (2014), even if carbon appeared not to be the
limiting nutrient, bacterial respiration could have been stimu-
lated by labile phytoplankton-derived dissolved organic mat-
ter (DOM). Besides carbon, phytoplankton DOM also pro-
vides P, offering an alternate source of the limiting element
to bacteria. This shift in the P source could explain the non-
utilization of DIP by heterotrophic bacteria during DUNE-2-
R2.

Consequences of dust deposition for new production

During the summer oligotrophic conditions in the western
Mediterranean Sea, PP is mainly dominated by regenerated
production, as about 85 % of PP is sustained by internal re-
cycling of organic matter within the euphotic zone through
remineralization processes (Marty et al., 2002; Moutin and
Raimbault, 2002; L’Helguen et al., 2002). As atmospheric
deposition constitutes a source of external nutrients to the
surface mixed layer, it induces by definition new production
(NP). The increase in PP in the Dust-meso 24 h after seed-
ing observed in the DUNE-1-P and DUNE-2-R experiments
can thus be associated with NP. We consider that, after 24 h,
the increase in PP could be mainly supported by regenerated
nutrients. Based on the estimates of the NP in the Dust-meso
24 h after the DUNE-1-P and DUNE-2-R seedings from Ri-
dame et al. (2013), the contribution of NP to PP increased
in the Dust-meso from initially 15 % to 60–70 % 24 h after
seeding. Wet dust deposition events induced a switch from
a regenerated-production based system (NP/PP= 0.15) to a
new-production based system (NP/PP= 0.60–0.70).

5 Summary and conclusions

Our results from original mesocosm experiments demon-
strate that wet atmospheric dust wet deposition does greatly
influence primary productivity and algal biomass in LNLC
environments through the atmospheric supply of new nutri-
ents. The response of the phytoplanktonic community to dust
events was quantified: primary production and biomass in-
creased∼ 2-fold, and the stimulation can be observed for
at least one week. Differences in the atmospheric input of
bioavailable new nutrients depending on the pathway of dust
deposition (wet or dry) led to contrasting responses of the
phytoplanktonic community. Primary production increased
significantly only after wet deposition events. In addition to
being a source of DIP, wet deposition due to cloud processes
and mixing with anthropogenic species such as HNO3 also
represent a significant source of NO−

3 , inducing a significant
increase in the ambient NO−3 /DIP ratio soon after deposition.
As dry deposition was not a significant source of NO−

3 , pri-
mary production was likely N limited or co-limited by both
N and P. By transiently increasing DIP and DIN concentra-
tions in P–N starved surface waters of the Mediterranean Sea,
wet deposition of Saharan dust relieves the potential N or NP
co-limitation of the phytoplanktonic activity. This study un-
derlines the importance of Saharan dust deposition on the
phytoplankton dynamics in the Mediterranean Sea and po-
tentially in all LNLC areas impacted by dust deposition such
as the tropical Atlantic and Pacific oceans. Despite the sig-
nificant stimulation of the phytoplanktonic production and
the increase in the POC export after wet events (Desboeufs
et al., 2014; Bressac et al., 2014), Guieu et al. (2014b) have
shown that simulated wet deposition did not result in a simple
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fertilization effect, as the oligotrophic ecosystem keeps or
reinforces its net heterotrophic character thanks to the high
organic carbon remineralization due to microbial food web
processes.

Modeling studies suggest that changes in climate and land-
use practices in recent decades may have altered dust fluxes,
and thus aeolian Fe, P and N inputs to the oceans (e.g., Ma-
howald and Luo, 2003). In addition, in the future, a warming
atmosphere and surface waters could potentially increase the
stratification of the surface waters in the Mediterranean Sea
(Somot et al., 2008) and other oceanic areas such as subtrop-
ical gyres (Bopp et al., 2001). In response to this, the bio-
geochemical impact of the Saharan deposition events on the
primary production could be more pronounced, in particular
during stratification periods.

The Supplement related to this article is available online
at doi:10.5194/bg-11-4783-2014-supplement.
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