J. Filee, P. Forterre, T. Sen-lin, and J. Laurent, Evolution of DNA Polymerase Families: Evidences for Multiple Gene Exchange Between Cellular and Viral Proteins, Journal of Molecular Evolution, vol.54, issue.6, pp.763-773, 2002.
DOI : 10.1007/s00239-001-0078-x

R. T. Pomerantz, O. Donnell, and M. , Replisome mechanics: insights into a twin DNA polymerase machine, Trends in Microbiology, vol.15, issue.4, pp.156-164, 2007.
DOI : 10.1016/j.tim.2007.02.007

E. R. Barry and S. D. Bell, DNA Replication in the Archaea, Microbiology and Molecular Biology Reviews, vol.70, issue.4, pp.876-887, 2006.
DOI : 10.1128/MMBR.00029-06

Z. Kelman, O. Donnell, and M. , DNA Polymerase III Holoenzyme: Structure and Function of a Chromosomal Replicating Machine, Annual Review of Biochemistry, vol.64, issue.1, pp.171-200, 1995.
DOI : 10.1146/annurev.bi.64.070195.001131

O. Donnell and M. , Replisome Architecture and Dynamics in Escherichia coli, Journal of Biological Chemistry, vol.281, issue.16, pp.10653-10656, 2006.
DOI : 10.1074/jbc.R500028200

P. Garg and P. M. Burgers, DNA Polymerases that Propagate the Eukaryotic DNA Replication Fork, Critical Reviews in Biochemistry and Molecular Biology, vol.94, issue.2, pp.115-128, 2005.
DOI : 10.1146/annurev.biochem.71.090501.150041

N. Mcelhinny, S. A. Gordenin, D. A. Stith, C. M. Burgers, P. M. Kunkel et al., Division of Labor at the Eukaryotic Replication Fork, Molecular Cell, vol.30, issue.2, pp.137-144, 2008.
DOI : 10.1016/j.molcel.2008.02.022

Z. F. Pursell, I. Isoz, E. B. Lundstrom, E. Johansson, and T. A. Kunkel, Yeast DNA polymerase epsilon participates in leading-strand DNA replication, Science, pp.317-127, 2007.

Z. Kelman and M. F. White, Archaeal DNA replication and repair, Current Opinion in Microbiology, vol.8, issue.6, pp.669-676, 2005.
DOI : 10.1016/j.mib.2005.10.001

K. P. Hopfner, A. Eichinger, R. A. Engh, F. Laue, W. Ankenbauer et al., Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius, Proc. Natl Acad. Sci. USA, pp.3600-3605, 1999.
DOI : 10.1073/pnas.96.7.3600

I. K. Cann, K. Komori, H. Toh, S. Kanai, and Y. Ishino, A heterodimeric DNA polymerase: Evidence that members of Euryarchaeota possess a distinct DNA polymerase, Proc. Natl Acad. Sci. USA, pp.14250-14255, 1998.
DOI : 10.1073/pnas.95.24.14250

I. K. Cann and Y. Ishino, Archaeal DNA replication: identifying the pieces to solve a puzzle, Genetics, vol.152, pp.1249-1267, 1999.

T. Uemori, Y. Sato, I. Kato, H. Doi, and Y. Ishino, : gene cloning, expression, and characterization, Genes to Cells, vol.2, issue.8, pp.499-512, 1997.
DOI : 10.1046/j.1365-2443.1997.1380336.x

Y. Shen, K. Musti, M. Hiramoto, H. Kikuchi, Y. Kawarabayashi et al., Invariant Asp-1122 and Asp-1124 Are Essential Residues for Polymerization Catalysis of Family D DNA Polymerase fromPyrococcus horikoshii, Journal of Biological Chemistry, vol.276, issue.29, pp.27376-27383, 2001.
DOI : 10.1074/jbc.M011762200

I. K. Cann, S. Ishino, I. Hayashi, K. Komori, H. Toh et al., Functional interactions of a homolog of proliferating cell nuclear antigen with DNA polymerases in Archaea, J. Bacteriol, vol.181, pp.6591-6599, 1999.

G. Henneke, D. Flament, U. Hubscher, J. Querellou, and J. P. Raffin, The Hyperthermophilic Euryarchaeota Pyrococcus abyssi Likely Requires the Two DNA Polymerases D and B for DNA Replication, Journal of Molecular Biology, vol.350, issue.1, pp.53-64, 2005.
DOI : 10.1016/j.jmb.2005.04.042

B. Castrec, C. Rouillon, G. Henneke, D. Flament, J. Querellou et al., Binding to PCNA in Euryarchaeal DNA Replication Requires Two PIP Motifs for DNA Polymerase D and One PIP Motif for DNA Polymerase B, Journal of Molecular Biology, vol.394, issue.2, pp.209-218, 2009.
DOI : 10.1016/j.jmb.2009.09.044

URL : https://hal.archives-ouvertes.fr/hal-00609928

C. Rouillon, G. Henneke, D. Flament, J. Querellou, and J. P. Raffin, DNA Polymerase Switching on Homotrimeric PCNA at the Replication Fork of the Euryarchaea Pyrococcus abyssi, Journal of Molecular Biology, vol.369, issue.2, pp.343-355, 2007.
DOI : 10.1016/j.jmb.2007.03.054

URL : https://hal.archives-ouvertes.fr/hal-00617495

B. R. Berquist, P. Dassarma, and S. Dassarma, Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1, BMC Genetics, vol.8, issue.1, p.31, 2007.
DOI : 10.1186/1471-2156-8-31

G. Henneke, reconstitution of RNA primer removal in Archaea reveals the existence of two pathways, Biochemical Journal, vol.160, issue.2, pp.271-280, 2012.
DOI : 10.1093/jmcb/mjq048

URL : https://hal.archives-ouvertes.fr/hal-00773151

M. A. Greagg, M. J. Fogg, G. Panayotou, S. J. Evans, B. A. Connolly et al., A read-ahead function in archaeal DNA polymerases detects promutagenic template-strand uracil, Proc. Natl Acad. Sci. USA, pp.9045-9050, 1999.
DOI : 10.1073/pnas.96.16.9045

M. J. Fogg, L. H. Pearl, and B. A. Connolly, Structural basis for uracil recognition by archaeal family B DNA polymerases, Nature Structural Biology, vol.9, issue.12, pp.922-927, 2002.
DOI : 10.1038/nsb867

J. Gouge, C. Ralec, G. Henneke, and M. Delarue, Molecular Recognition of Canonical and Deaminated Bases by P. abyssi Family B DNA Polymerase, Journal of Molecular Biology, vol.423, issue.3, pp.315-336, 2012.
DOI : 10.1016/j.jmb.2012.07.025

URL : https://hal.archives-ouvertes.fr/hal-00775878

S. J. Firbank, J. Wardle, P. Heslop, R. J. Lewis, and B. A. Connolly, Uracil Recognition in Archaeal DNA Polymerases Captured by X-ray Crystallography, Journal of Molecular Biology, vol.381, issue.3, pp.529-539, 2008.
DOI : 10.1016/j.jmb.2008.06.004

T. Killelea, S. Ghosh, S. S. Tan, P. Heslop, S. J. Firbank et al., Probing the Interaction of Archaeal DNA Polymerases with Deaminated Bases Using X-ray Crystallography and Non-Hydrogen Bonding Isosteric Base Analogues, Biochemistry, vol.49, issue.27, pp.5772-5781, 2010.
DOI : 10.1021/bi100421r

J. Wardle, P. M. Burgers, I. K. Cann, K. Darley, P. Heslop et al., Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya, Nucleic Acids Research, vol.36, issue.3, pp.705-711, 2008.
DOI : 10.1093/nar/gkm1023

H. Sawai, J. Nagashima, M. Kuwahara, R. Kitagata, T. Tamura et al., Differences in Substrate Specificity ofC(5)-Substituted orC(5)-Unsubstituted Pyrimidine Nucleotides by DNA Polymerases from Thermophilic Bacteria, Archaea, and Phages, Chemistry & Biodiversity, vol.5, issue.9, 1979.
DOI : 10.1002/cbdv.200790165

A. Palud, G. Villani, S. L-'haridon, J. Querellou, J. P. Raffin et al., in replicating abasic sites: possible role in DNA damage tolerance?, Molecular Microbiology, vol.246, issue.3, pp.746-761, 2008.
DOI : 10.1111/j.1365-2958.2008.06446.x

URL : https://hal.archives-ouvertes.fr/hal-00617129

K. Tori, M. Kimizu, S. Ishino, and Y. Ishino, DNA Polymerases BI and D from the Hyperthermophilic Archaeon Pyrococcus furiosus Both Bind to Proliferating Cell Nuclear Antigen with Their C-Terminal PIP-Box Motifs, Journal of Bacteriology, vol.189, issue.15, pp.5652-5657, 2007.
DOI : 10.1128/JB.00073-07

H. J. Russell, T. T. Richardson, K. Emptage, and B. A. Connolly, The 3'-5' proofreading exonuclease of archaeal family-B DNA polymerase hinders the copying of template strand deaminated bases, Nucleic Acids Research, vol.37, issue.22, pp.7603-7611, 2009.
DOI : 10.1093/nar/gkp800

K. Emptage, R. O-'neill, A. Solovyova, and B. A. Connolly, Interplay between DNA polymerase and proliferating cell nuclear, Nucleic Acids Research, vol.41, issue.7, p.4217, 2008.

B. Castrec, S. Laurent, G. Henneke, D. Flament, and J. P. Raffin, The Glycine-Rich Motif of Pyrococcus abyssi DNA Polymerase D Is Critical for Protein Stability, Journal of Molecular Biology, vol.396, issue.4, pp.840-848, 2010.
DOI : 10.1016/j.jmb.2010.01.006

URL : https://hal.archives-ouvertes.fr/hal-00609913

C. M. Joyce, Techniques used to study the DNA polymerase reaction pathway, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.5, pp.1032-1040, 2010.
DOI : 10.1016/j.bbapap.2009.07.021

F. Matsunaga, C. Norais, P. Forterre, and H. Myllykallio, Identification of short ???eukaryotic??? Okazaki fragments synthesized from a prokaryotic replication origin, EMBO reports, vol.67, issue.2, pp.154-158, 2003.
DOI : 10.1038/sj.embor.embor732

S. Kim, H. G. Dallmann, C. S. Mchenry, and K. J. Marians, Coupling of a Replicative Polymerase and Helicase: A ?????DnaB Interaction Mediates Rapid Replication Fork Movement, Cell, vol.84, issue.4, pp.643-650, 1996.
DOI : 10.1016/S0092-8674(00)81039-9

K. Yamasaki, Y. Urushibata, T. Yamasaki, F. Arisaka, and I. Matsui, Solution structure of the N-terminal domain of the archaeal D-family DNA polymerase small subunit reveals evolutionary relationship to eukaryotic B-family polymerases, FEBS Letters, vol.25, issue.15, pp.3370-3375, 2010.
DOI : 10.1016/j.febslet.2010.06.026

J. A. Hinks, M. C. Evans, Y. De-miguel, A. A. Sartori, J. Jiricny et al., An Iron-Sulfur Cluster in the Family 4 Uracil-DNA Glycosylases, Journal of Biological Chemistry, vol.277, issue.19, pp.16936-16940, 2002.
DOI : 10.1074/jbc.M200668200

J. Rudolf, V. Makrantoni, W. J. Ingledew, M. J. Stark, and M. F. White, The DNA Repair Helicases XPD and FancJ Have Essential Iron-Sulfur Domains, Molecular Cell, vol.23, issue.6, pp.801-808, 2006.
DOI : 10.1016/j.molcel.2006.07.019

D. J. Netz, C. M. Stith, M. Stumpfig, G. Kopf, D. Vogel et al., Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes, Nature Chemical Biology, vol.269, issue.1, pp.125-132, 2011.
DOI : 10.1074/jbc.275.19.14541