
Design under Constraints of Availability and Energy for Sensor

Node in Wireless Sensor Network

Van-Trinh HOANG, Nathalie JULIEN, Pascal BERRUET
van-trinh.hoang@univ-ubs.fr, nathalie.julien@univ-ubs.fr, pascal.berruet@univ-ubs.fr

Lab-STICC/University of South-Brittany, Research Center, BP 92116, 56321 Lorient, France.

Abstract—Wireless Sensor Network (WSN) technology has
been getting a lot of attention in recent years due to its low-cost,
portability, easy deployment, self-organisation, and reconfigura-
bility. Two main challenges faced by designers are availability
and power/energy management for WSN. This paper presents a
design for a wireless sensor node, which provides automated
reconfiguration for both availability and energy-efficient use.
This design introduces an original device named Power and
Availability Manager (PAM) combined with a FPGA. The first
one is considered as the intelligent part for the best use of energy
and fault-tolerance, while the other enhances the availability
in case of hardware failure for a node. Simulation model of
these solutions together is based on General Stochastic Petri Net
(GSPN). The results indicate a gain of availability from 9% to
31% for sensor node over twelve years, from 9% to 46% for
sensor cluster over eighteen years, from 11% to 45% for whole
network over fifty years. Our approach also results in significant
energy-saving : up to 61% by using DPM policy, and up to
62.5% by using DPM and DVFS policies over seven days. These
results allow us to evaluate and to show a design of WSN node
for increased availability as well as energy-saving by using our
approach.

Index Terms: availability, energy-efficiency, fault-tolerance,

reconfiguration, WSN, PAM device, FPGA.

I. INTRODUCTION

Wireless Sensor Network (WSN) is ideally suited as founda-

tion for many applications. Thanks to its portability, it may be

carried out on everywhere from the human body to be deeply

embedded in the environment. Wireless Sensor node can easily

be deployed in large space with dramatically less complexity

and cost compared to wired networks. Additionally, sensors

can self-organize to form routing paths, collaborate on data

processing, and establish hierarchies. The WSN is also re-

configurable by easily adding and removing sensor nodes.

Thus it is the most favorite candidate for many applications

such as area monitoring, environment monitoring, industrial

monitoring, etc.

Each WSN consists of small sensors, with limited process-

ing and computation capacity, memory, and battery power.

Besides, the sensor nodes are deployed in the harsh envi-

ronment, thus the human intervention is mostly impossible in

case of hardware failure and energy depletion. Therefore, both

availability and energy-efficient consumption are the important

key features that decide the success of such a WSN. Many

works are available on availability such as [4], [10], [9] or

on energy-efficiency such as [12], [1], [7], separately. But

there are few works that take into account both aspects. Thus

our goal is to provide a design of sensor node for increased

availability as well as energy-saving. This paper is organized

as follows. In section II, the related work is presented. In

section III, we expose problem issues encountered in a sensor

node and our approach using PAM and FPGA for available,

fault-tolerant and energy-efficient system. The simulation tests

are provided in section IV. Section V contains conclusions and

future works.

II. RELATED WORKS

A. Availability

Ringwald and Rmer [9] provide a list of possible prob-

lems and their causes on WSN during deployment. These

problems can be detected by means of passive inspection

method [11] that does not require any modification of sensor

network. Unfortunately, they do not specify any methods to

fix these problems. High dependability of computing systems

is paramount requirement for embedded system, but advances

in manufacturing the semiconductor device increase the inter-

mittent and permanent faults. Constantinescu [4] proposes a

method for evaluating availability of fault-tolerant processor

by using GSPN modeling [5], but his method needs a double

hardware requirement that occupies more system space. Suho-

nen [10] presents remote diagnostics and performance analysis

that comprise self-diagnostics on embedded sensor nodes, but

he does not indicate in detail the reasons of a sensor node

failure.

B. Energy-Efficiency

In this domain, two major methods for optimizing energy

consumption are Dynamic Power Management (DPM), and

Dynamic Voltage and Frequency Scaling (DVFS) [1]. The

strategy of first one is to turn off a part of the circuit or

run it in degraded mode (sleep or deep sleep mode) which

reduces consumption, but it requires a suitable wake-up time

and power overhead that do not violate the operation of

application. The second one allows decreasing the supply

voltage and operating frequency under application permission.

Since there are large overheads by using DVFS, thus DPM

is more preferable to use in our approach. Hassanein and

Luo [12] propose Reliable Energy Aware Routing (REAR)

that includes local node selection, path reservation, and path

request broadcasting delay to provide a reliable transmission

environment to reduce retransmissions caused by unstable

paths. Miguel and Juan [7] introduce a novel architecture that

takes into account addressing scheme, topology control, multi-

hop synchronization, task scheduling, application data model

to extend the battery life.

Supervisor

Network level

Cluster level

Node level

Sink

Relief Sink

Gateway

Temporary Gateway

Candidate Gateway

Normal Node

Fig. 1. Architecture of wireless sensor network

C. Objective

In all these attempts, an overall approach that takes into

account both availability and energy-efficiency aspects is still

missing. Therefore, a novel available and energy-efficient

design is proposed for sensor node. As a result, that leads to

a more reliable and efficient sensor network. The next section

describes in detail our approach.

III. OUR APPROACH

A. Architecture and hardware configuration of WSN

Fig. 2. Hardware configuration of wireless sensor node

As mentioned earlier, the aim of our approach is to provide a

design of sensor node that takes into account both availability

and energy-efficiency. Since the centralized network has the

drawbacks such as limied space coverage and problem of

buffer overflow at sink node. Therefore, we focus at decentral-

ized network for our approach. According to our vision, the

WSN is considered in three levels of hierarchy. The lowest

one of which is sensor node level, the medium one is cluster

level, and the highest one is network level. Additionally, six

types of sensor are considered in our network as indicating in

Figure 1.

In above figure, Normal Nodes, Temporary, and Candi-

date Gateway capture and deliver data directly or through

their neighbor nodes to Gateway, which is considered as the

head of sensor cluster. Then Gateway aggregates the sent data

and transmits it to the Sink through other Gateways. Finally,

the Sink sends data to the supervisor for checking. In case

of failure of Gateway, Temporary Gateway replaces tem-

porarily it and actives a mechanism to select a new Gateway

in the set of Candidate Gateway. The Relief Sink is used

to replace immediately the Sink if it is out-of-order, because

this problem is the most critical that leads to lose whole

network. The Relief Sink is inactive until it receives wake-up

message from the Sink. Our hardware configuration model of

a node is illustrated in Figure 2 that includes a processor, a

RAM/FLASH memory, a Power Availability Manager (PAM),

a configurable zone of FPGA, an Interface for Actuator and

Sensors (IAS), a Radio Transceiver Module (RTM), and a

battery with DC-DC converters.

B. Problem issues and solutions of sensor node

Our self-reconfigurable sensor node can detect wrong be-

haviors and failures due to software, hardware or energy when

they occur, then take corrective solution to make itself less

vulnerable. For automating failure detection, PAM block polls

periodically each component of sensor node, as illustrated in

Figure 3. In order to detect processor failure, PAM sends a

message to it. If PAM does not receive any feedback from

processor, it is considered as failed. In case of memory, PAM

writes and reads a data on it and then compares this data

with the original one. If they are not the same, the memory is

failed. For the sensors interface and the radio module, PAM

stores the value of energy consumption (capturing, reception,

transmission) of each component and supervises the energy

consumption when they are operating. If there is a large

difference with the same amount of data between the stored

energy value and the operating energy value, the sensors or

the radio module is considered as failed.

To mitigate the data conflict, two First In First Out (FIFO)

buffers are used in which CapturingBuffer stores the captured

data, and ReceptionBuffer saves the data sent by other nodes.

The Ram memory is also partitioned in three zones for storing

capturing data, receiving data and transmitting data. Based on

the list of possible issues [9], and our knowledge, several

Fig. 3. Architecture of wireless sensor node

TABLE I
ISSUES AND CORRECTIVE SOLUTIONS FOR SENSOR NODE

Problem
Software and Hardware causes Energy causes

SolutionDown Down Down Down Soft Low Energy
Processor Ram IAS RTM Bug Energy Depletion

Dead Node
X PAM enables FPGA processor to replace processor

X PAM enables FPGA memory to replace RAM/Flash
memory

X Wait for recharging battery

Malfunctioning
Node

X PAM changes mode of operation to relay point
X PAM changes mode of operation to local processing

X Processor reboots
X PAM selects consistent mode of operation and

wait for battery recharge

TABLE II
OPERATING MODES OF SENSOR NODE

❳
❳
❳

❳
❳
❳
❳❳

Mode
Unit

Processor RAM FPGA
IAS RTM

Sensor1 Sensor2 Camera Transmitter Receiver

On-Duty On On Off On On/Off On/Off On On

Performance On On On On On/Off On/Off On On
Enhance

Dead Off On On On On/Off On/Off On On
Processor

Dead RAM On Off On On On/Off On/Off On On

Local On/Off On/Off On/Off On On/Off On/Off Off Off
Processing

Relay On/Off On/Off On/Off Off Off Off On On

Monitoring On/Off On/Off On/Off On Off Off Off On

Observation Sleep Off Off On Off Off Off On

Sleep Sleep Off Off Off Off Off Off Off

Deep Sleep Deep Sleep Off Off Off Off Off Off Off

Dead Node Off Off Off Off Off Off Off Off

problems encountered in a sensor node and their corrective

solutions are described in Table I.

Apparently, our sensor node can react consistently against

all issues with help of PAM and FPGA block. The first one

is considered as the intelligent part for the best use of energy

and fault-tolerance, while the other enhances the availability

of sensor node. Besides, PAM block not only intervenes in

case of failure, but also selects the suitable mode of operation

to minimize the power consumption, that leads to extend the

node lifetime. We define eleven operating modes for a sensor

node including their active and inactive components, which

are presented in Table II.

The behavior of node system refers to the Discrete Event

System. Among all models, Finite State Machine (FSM) is

suitable for modeling these operating modes (see Figure 4).

This FSM model consists of a set of states and transitions.

When each state represents a particular mode (On-Duty,

Performance Enhance, Monitoring, Observation,...), and each

transition represents one or more discrete events that make

the transition from one operating mode to another one. The

FSM model is divided into two parts marked with blue border

and green rectangle. The blue one mentions the availability

management of the system, while the green one relates to

the compromise between performance and energy-efficiency.

At beginning, FSM model enters in the Monitoring state,

only Processor, Ram, Sensor1, and Receiver are active. In

the next sub-section, the first part of FSM model concerning

the performance and energy management of sensor node is

introduced.

C. Node Level Performance and Energy Management

By reason of limited powered battery, the energy-efficient

consumption in sensor node is always one of major challenge

for designer, even in case of auto-harvesting energy because

the energy from the environment is generally unpredictable,

discontinuous, and unstable. Additionally, the more energy is

saved, the more node lifetime is extended. In our approach,

sensor node can harvest energy from the environment by

using Weather Forecasts (WFs) [6] model. WFs are used to

determine which power harvesting source will have the highest

energy availability and to predict the node lifetime. The energy

management of our node is controlled by PAM block based

on both DPM and DVFS policy [1], in which the first one

can turn off the components while any task runs on them,

and the second one can regulate the supply voltage and the

operating frequency based on the type of generated event. In

the Figure 4, the states are arranged in order of increasingly

consuming energy such as Deep Sleep, Sleep, Observation,

and Monitoring. Basing on the period of activities and the

battery level, the state is changed between them.

As we know that most of the energy in WSN nodes is

consumed by radio transceiver, but all the states (except Deep

Sleep and Sleep) in our FSM model have receiver on, because

we try to provide a general approach for all applications. For

Surveillance

period

Deep Sleep
Processor : deep

sleep

Sleep
Processor : sleep

Energy < 5% Energy >= 10%

Observation
Processor : sleep

Receiver : on

Sensor 1 : on

Energy >= 20%

Energy < 15%

Monitoring
Processor : on/off

FPGA : on/off

Receiver : on

Sensor 1 : on

Ram : on/off

Observe

periodOn duty
Processor : on
Sensor 1 : on

Sensor 2 : on/off

Camera : on/off

Ram : on

Receiver : on
Transmitter : on

Detection alarm

& !Down_Pro

& !Down_Ram

Enhance
Processor : on
Sensor 1 : on

Sensor 2 : on/off

Camera : on/off

Ram : on

FPGA : on
Receiver : on

Transmitter : on

Operation

completes

Count > LimitCount Tasks complete

Dead Processor
Sensor 1 : on

Sensor 2 : on/off

Camera : on/off

Ram : on

FPGA : on

Receiver : on
Transmitter : on

Dead Ram
Processor : on
Sensor 1 : on

Sensor 2 : on/off

Camera : on/off

FPGA : on

Receiver : on
Transmitter : on

Relay
Processor : on/off

FPGA : on/off

Ram : on/off

Receiver : on

Transmitter : on

Local Processing
Processor : on/off

FPGA : on/off

Ram : on/off

Sensor 1 : on

Sensor 2 : on/off

Camera : on/off

Dead Node

Detection alarm

& Down_RamOperation

completes

Detection alarm

& Down_Pro

Operation

completes

(Down_RTM

& Down_IAS)

|| (Down_Ram

& Down_FPGAMem)

|| (Down_Pro
& Down_FPGAPro)

Down_RTM

Down_IAS

Down_IAS

Down_RTM

Energy < 15%

|| Sleep period
Energy >= 20%

& Observe period

Performance and Energy Management

Availability Management

Fig. 4. FSM model of operating modes for sensor node

example, in the application of detecting hazardous gaz for the

normal area like warehouse, the radio transceiver is only turned

on in a time interval based on the generated events. Thus, the

sensor node switches mostly between Sleep, Monitoring and

On-Duty modes. But with the same application for residential

area, the radio receiver is always turn on, even in low power

modes, to receive and send rapidly the data to the supervisor

in case of detecting dangerous gaz. Therefore, the evacuation

can be rapidly executed. In this application, the sensor node

switches mostly between Observation, Monitoring and On-

Duty modes to save energy.

Besides, the performance of the node system is also con-

sidered to reduce the execution time of application. That leads

to improve performance of the network. For example, the

state is initially in Monitoring. When an alarm detection is

generated, state changes to On-Duty, and Sensor2 or Camera

can be turned on for image or video processing application.

If the execution time of application passes a time deadline,

PAM block activates the FPGA that allows parallel processing

between processor and FPGA processor. Thus, this leads

to accelerated execution. After completing all the tasks, the

system comes back to Monitoring state. The next sub-section

describes availability management of our sensor node.

D. Node Level Availability Management

Definition III.1. Availability is the ability of an entity to be

able to accomplish a required function under given conditions

and at a given time.

As previously mentioned, the state of FSM model is ini-

tially in Monitoring. When Sensor1 generates an alarm of

detection and if the main processor is down, state changes to

Dead Processor. Consequently, FPGA processor is enabled to

replace the main one for processing the data. Some special

devices such as Sensor2 or Camera can be turned on to

verify the circumstance or take a video of the scene. After

completing all tasks, the state comes back to Monitoring

state. The procedure is similar when Ram memory is down,

the FPGA memory is enabled, and state changes to Dead

Ram if an alarming detection arrives. The other problems are

considered such as failure of either the IAS or the RTM. The

sensor node is considered as a relay point in the first case,

2

1

1

1

UpS DownS

2

FailS

CapturedD

ReadyDS

StoreRam
StoreFPGAMem

UpRadio DownRadio

FailRadio

UpRam

FailRam

DownRam

ActiveFPGAMem

UpFPGAMem

FailFPGAMem

UpP

FailP

DownP

ActiveFPGAP

UpFPGAP

FailFPGAP DownAllPro

BeginBugPRebootPEndBugP

BeginBugFPGAP

RebootFPGAPEndBugFPGAP
ComputeP

ComputeFPGAP

ReadyDRam

10

ReadyDP

TransmitPack

DownAllMem

DownSenRadioFailSenRadio
λs

λram
λfpgamem

λp

λfpgap

λbug

λbug

λradio

DataForTransmit

StoreSentDataInRam StoreSentDataInFPGAMem

Fig. 5. GSPN availability model of sensor node for capturing data

or as local processing in second case. The local processing

mode is defined because in some applications like detection

of hazardous gaz, we keep the sensor node still running even

when its radio module is failed. Thus, the technician can

recover the recent captured data when he arrives to repair the

radio module. If both sensors and radio transceiver, or main

and FPGA processor, or RAM and FPGA memory are down,

the node state reaches to Dead Node.

Since the behavior of node system refers to Discrete Event

System, Petri Nets (PNs) [2] are suitable for modeling be-

havior of communicating and synchronized processes. The

availability of sensor node is modelled by Petri Nets (PNs),

which not only performs the concurrent operations and asyn-

chronous events of system, but also supports the failure pre-

diction features. PN [5] is bipartite weighted graph including

places(P:), transitions(T:). A transition is connected to its input

places by input arcs shown as directional arrows. Conversely,

output arcs drawn from the transitions to its output places.

General Stochastic Petri Net (GSPN) [5] is used that supplies

two types of transitions: timed transitions with exponentially

distributed firing time and immediate transition with zero firing

time. Graphically, the places are described as circles, timed

transitions as white rectangles, immediate transitions as black

bars, tokens as dots or integer numbers within a place, arcs

as lines with an arrow at end and inhibitor arcs as lines with

small circles at end.

GSPN model of system of our node for capturing data

is depicted in Figure 5. At beginning, several tokens reside

in the places P:UpS, P:UpP, P:UpRam and P:UpRadio that

represent the number of functioning components such as

sensors, processor, ram memory and radio transceiver mod-

ule. The failure rates of these components are respectively

depicted by exponentially distributed firing rates λs, λp, λram,

λradio (see Table III). Appearance of a token in the places

P:DownS, P:DownP, P:DownRam and P:DownRadio indicates

the failure of each component. When a data captured by

sensors is stored in Buffer, a token is present in P:ReadyDS.

An inhibitor arc with multiplicity of 10 from P:ReadyDS

to T:CapturedD prevents the number of tokens in this place

from being greater than 10, because capturing data buffer size

is fixed to 10. Then, the data are stored in Ram memory

before being processed by processor. If there is a software

bug with rate λbug during execution, the processor is re-

booted. When processing is completed, a token is present

in the P:ReadyDP meaning that data are ready for storing

in memory before transmitting P:DataForTransmit. In case

of failure of Ram memory or processor, FPGA memory or

processor is activated for replacing. The failure rates of FPGA

memory and processor are respectively λfpgamem, λfpgap

(see Table III). Also, the inhibitor arcs from P:ReadyDRam

to T:StoreRam and T:StoreFPGAMem, from P:ReadyDP to

T:ComputeP and T:ComputeFPGAP, from P:DataForTransmit

to T:StoreSentDataInRam and T:StoreSentDataInFPGAMem

ensure that only one token can be in these places. On the other

hand, the inhibitor arcs from P:RebootP to T:ComputeP and

from P:RebootFPGAP to T:ComputeFPGAP mean that, while

a processor is rebooting, computation cannot be performed.

The node system is completely down if a token appears

in P:DownSenRadio or P:DownAllMem, or P:DownAllPro.

It means that both IAS and RTM, or both Ram memory and

FPGA memory, or both main Processor and FPGA Processor

are down. Since we are focussing on the availability of the

system, we can assume that the firing time for transitions

T:CapturedD, T:StoreRam, T:StoreFPGAMem, T:ComputeP,

T:ComputeFPGAP, T:TransmitPack, T:StoreSentDataInRam,

T:StoreSentDataInFPGAMem, T:ActiveFPGAMem,

T:ActiveFPGAP, T:FailSenRadio is small comparing to

other activities. Thus, these transitions are modelled as

immediate transitions (blacks bars), when others are modelled

as timed transition (white rectangles). Because of the

constraint of the paper length, the complete models of cluster

and network are not presented here.

Several simulation results are exposed in section IV, that

show the improvement in availability and consuming energy

of sensor node, cluster, and network by applying our approach.

IV. SIMULATION RESULTS

The Stochastic Petri Net Package (SPNP) tool [8] is used for

availability simulation tests. Mean Time To Failure (MTTF)

is defined for each component.

Definition IV.1. Mean Time To Failure (MTTF) is defined

for non-repairable systems to indicate the average functioning

time from instance 0 to the first appearance of failure.

These MTTFs are shown in Table III. In this section, we

do not simulate the software bug problem, we focus on the

TABLE III
FAILURE RATE AND MTTF FOR EACH COMPONENT

Component Failure rate (λ) Mean Time To Failure

Sensor 1/30000 fail/hour MTTF of a sensor is 3.4 years

Processor 1/262800 fail/hour MTTF of processor is 30 years

RAM 1/83220 fail/hour MTTF of RAM memory is 9.5
years

RTM 1/100000 fail/hour MTTF of radio transceiver is
11.4 years

FPGA memory 1/80000 fail/hour MTTF of FPGA memory is 9.1
years

FPGA processor 1/131400 fail/hour MTTF of FPGA processor is
15 years

failure of each component that is more serious. The time to

occurence of failure in the Sensors, Ram memory, Processor

and Radio module is assumed to be random variable with

exponentially distributed rates λs, λram, λp and λradio (Table

III). Since the failed components in our node can not be

repaired, the availability of sensor node is computed as same

as its reliability computation, A(t)= R(t).

Definition IV.2. Failure rate λ(t) is the limit, between t and

t+dt , of the quotient of the probability density of failure by

the probability of reliability before t.

λ(t) =
1

R(t)
.
dF (t)

dt
=

1

R(t)
.
−dR(t)

dt
=

f(t)

R(t)
, F (t) = 1−R(t)

(1)

We have the probability density of failure:

f(t) =
dF (t)

dt
= −

dR(t)

dt
(2)

and f(t)dt is the failure probability of the entity between t

and t+dt:

f(t)dt = Pr[t < T < t+ dt] (3)

While λ(t)dt is the failure probability of the entity during

interval [t, t+dt], given the fact that the entity has not been

failed during interval [0, t], hence:

λ(t)dt = Pr[t < T < t+ dt|T > t] (4)

Or:

λ(t)dt =
Pr[(t < T < t+ dt)

⋂

(T > t)]

Pr[T > t]
(5)

But (T > t)
⋂

(t < T < t+dt) = (t < T < t+dt), thus:

λ(t)dt =
Pr[(t < T < t+ dt)]

Pr[T > t]
=

f(t).dt

R(t)
= −

dR(t)

R(t)
(6)

∫ t

0

λ(x) dx = −

∫ t

0

dR(x)

R(x)
= − lnR(t) (7)

Since R(0)=1 and ln(1)=0. Thus R(t) = e−
∫

t

0
λ(x) dx =

e−λ.t = A(t), because the failure rate is constant. The failure

probability of each component is calculated as F(t) = 1 - A(t).

The Figure 6 illustrates the failure probabilities of components

over ten years, in which the sensors are the most critical

components due to their low reliability (the smallest MTTF),

because their circuitry is very complex.

In SPNP tool, we can define the appropriate reward rates

to compute the output mesures of interest. The advantage

is that we only need to specify the reward rates associated

with certain conditions of the system, instead of explicitly

identifying all its states. In our case, the availability of node

system is the output mesure of interest. Node system is still

available if there is not any token in P:DownSenRadio, or

P:DownAllMem, or P:DownAllPro (see Figure 5). To compute

the availability of node system by using SPNP tool, we only

Probability

Time (years)

Failureprobability of sensors

Failureprobability of Ram

Failureprobability of Radio transceiver

Failureprobability of Processor

Fig. 6. Failure probability of components

Availability

Time (Years)

0,31

0,09

Sensor nodewithoutPAM block and FPGA

Sensor nodewith PAM block and FPGA

Fig. 7. Comparison of node availability with and without our approach

need to specify reward rate associated with the condition of

node availability as follows:

ravailability =

0 if (#(DownSenRadio)=1) or

(#(DownAllMem)=1) or

(#(DownAllPro)=1).

1 otherwise.

(8)

Where: #(p) represents the number of tokens in place p.

The availability of our node at time t is computed as the

expected instantaneous reward rate E[X(t)] at time t, where

X(t) is a random variable corresponding to the instantaneous

reward rate of node availability. The expression of E[X(t)] is

described as follows:

E[X(t)] =
∑

k∈T

rk.πk(t) (9)

πk(t) is the probability of being in marking k at the time

t, and T is the set of markings. The computation of πk(t)
is described in detail in [5]. The Figure 7 depicts that the

node availability is significantly increased from 9% to 31%

over twelve years. From node availability results, the cluster

availability is then simulated. We assume that our sensor

Time (Years)

0,46

0,09

Availability

Sensor cluster withoutPAM block and FPGA

Sensor cluster with PAM block and FPGA

Fig. 8. Comparison of cluster availability with and without our approach

Time (Years)

0,45

0,11

Availability

Sensor network without PAM block and FPGA

Sensor network with PAM block and FPGA

Fig. 9. Comparison of network availability with and without our approach

cluster consists of two normal nodes, a Gateway and a Can-

didate Gateway. Figure 8 presents the comparison of cluster

availability simulation with and without using our device, and

Candidate Gateway. Cluster availability is increased from 9%

to 46% over eighteen years with our approach. Also, the im-

pact of our approach is tested in network availability. Similarly,

we assume that our network consists of two clusters, a Sink

and a Relief Sink. Figure 9 introduces a large improvement in

network availability from 11% to 45% over fifty years.

In the energy simulation, our approach is tested with the ap-

plication of hazardous gaz detection for area such as harbor or

warehouse. Our sensor node has a PIC24FJ256GB110 MCU,

a M48T35AV RAM memory, a Miwi radio transceiver, a

Oldham OLCT 50 gaz detection, the power switches (LM3100

and MAX618), and a battery. Our energy management is based

TABLE IV
ENERGY CONSUMPTION OF EACH COMPONENT IN SEVEN DAYS

Components Non DPM+DVFS(kJ) DPM(kJ) DPM+DVFS(kJ)

Sensors 39.673 39.151 39.225

RAM 171.73 10.545 6.277

Processor 41.671 24.047 23.123

Radio 9.956 9.824 6.205

Total 334.3 129.173 125.519

0

50000

100000

150000

200000

250000

300000

350000

400000

Sensors RAM Processor Radio Total

Not use DPM+DVFS

Use DPM

Use DPM+DVFS

Energy (J)

Fig. 10. Comparison of consuming energy of node with and without our
approach

on DPM and DVFS policies. Three simulations with duration

of seven days are realized by using CAPNET Power Energy

Estimator software [6] that has been developped by our Lab-

STICC laboratory. In the first one, the DPM and DVFS policies

are not used, it means that the MCU and the RAM memory are

at Monitoring modes in all the functioning time, and the other

components run at their maximum supply voltage when being

activated. In the second one, only DPM is used to turn off the

MCU and the RAM memory when there is not any running

task. For the last simulation, both DPM and DVFS are used.

The supply voltage and the operating frequency is dynamically

regulated for each component based on the type of generated

event. To mitigate the large overheads in computation by using

DVFS, the supply voltage is set maximum for each component

in case of hazardous gaz detection, and is set minimum for

each component when any detection is found. The energy

consumption of each component is given in the Table IV. In

this table, the total energy consumption represents the sum

of the energy being consumed by all the components and the

energy loss in all the converters. These results indicate that

the total energy being consumed by the third simulation is

62.5% less than the first one, and is 3.2% less than the second

one (as depicted in Figure 10). In this paper, the consumption

of PAM is ignored since we have not decided its hardware

configuration. Additionally, PAM only checks the state of other

components by polling periodically the components, it does

not realize any complex computation. Thus, our PAM device

occupies very small space and consumes very small energy

compared with other component. The PAM consumption will

be mesured in our future works.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, a design of WSN node for increased avail-

ability and energy-efficiency is presented. An original device

named Power Availability Management (PAM) combined with

FPGA is employed. FSM and GSPN models are used to

evaluate the availability and energy consumption of sensor

node. The simulation results with Capnet-PE and SPNP tool

show that our approach significantly increases the availability

and energy-saving of sensor node, which allows to lead to a

more reliable and energy-efficient sensor cluster and network.

Finally, we have demonstrated the feasibility and interest of

our approach and we will implement it on a real case in order

to validate with the measurements. Our future works focus on

the following aspects:

• A Time Division Multiple Access (TDMA) method [3] is

allocated or created in order to avoid the buffer overflow

problem that leads to a steady connection between nodes.

• As we know, the data transmission is the most consum-

ing part of battery energy. Therefore, Dynamic Voltage

Frequency Scaling (DVFS) can be applied to set different

operating frequency for transmission according to the size

of data. That leads to a energy-efficient transmission.

• In case of Gateway failure, many strategies can be

considered to select a new Gateway like the most

reliable transmission Candidate Gateway, or Candidate

Gateway that possesses the highest residual energy, or

combined both two aspects.

The author would like to express his sincere thanks to Mr.

Kishor S. Trivedi (Hudson Professor of Electrical and Com-

puter Engineering), and Mr. Xiaoyan Yin (Technical Engineer

of Electrical and Computer Engineering) at Duke University,

USA for providing SPNP tool and helping us to use it.

The author is greatly thankful to his colleague Nicolas Ferry,

one of the authors of CAPNET-PE Estimator tool, for his very

helpful support during the energy simulation.

REFERENCES

[1] Marcus T. Schmitz, Bashir M. Al-Hashimi, Petru Eles, System-Level
Design Techniques for Energy-Efficient Embedded Systems, Kluwer Aca-
demic Publishers, first edition, Boston, USA, 2004.

[2] S. Lafortune, C.G. Cassandras, Introduction to Discrete Event System,
Springer Publishers, second edition, Harvard, USA, 2008.

[3] R. Karri, D. Goodman, System-Level Power Optimization for Wireless
Multimedia Communication, Kluwer Academic Publishers, first edition,
Dordrecht, The Netherlands, 2002.

[4] C. Constantinescu, Dependability evaluation of a fault-tolerant processor
by GSPN modeling, IEEE Transactions on Reliability, September, 2005,
pp. 468–474.

[5] P. Chimento , JR. Jogesh , K. Muppala , G. Ciardo , A. Blakemore
and K.S. Trivedi, Automated generation and analysis of markov reward
models using stochastic reward nets, Linear Algebra, Markov Chains and
Queuing Models, Eds: Springer Verlag, 1993, pp. 145–191.

[6] Nicolas Ferry , Sylvain Ducloyer , Nathalie Julien and Dominique Jutel,
Power/Energy Estimator for DesigningWSN Nodes with Ambient Energy
Harvesting Feature, EURASIP Journal on Embedded Systems, January ,
2011.

[7] M.A. Lopez-Gomez, J.C. Tejero-Calado, A lightweight and energyeffi-
cient architecture for wireless sensor networks, IEEE Transactions on
Consumer Electronics, August, 2009, pp. 1408–1416.

[8] J. Muppala , G. Ciardo, K.S. Trivedi, Spnp: Stochastic petri net package,
Proceedings of the Third International IEEE Workshop, 1989, pp. 142–
151.

[9] M. Ringwald, K. Romer, Deployment of sensor networks: Problems and
passive inspection, Fifth IEEE Workshop on Intelligent Solutions in
Embedded Systems, June, 2007, pp. 179–192.

[10] J. Suhonen, M. Hanninen, T.D. Hamalainen, M. Hannikainen, Remote
diagnostics and performance analysis for a wireless sensor network, IEEE
Workshop on Signal Processing Systems (SiPS), October, 2011, pp. 67–
72.

[11] K. Romer, M. Ringwald, A. Vitaletti, Snif: Sensor network inspection
framework, ETH Zurich, Zurich, 2006.

[12] H. Hassanein, Jing Luo, Reliable energy aware routing in wireless
sensor networks, Second IEEE Workshop on Dependability and Security
in Sensor Networks and Systems (DSSNS), April, 2006, pp. 54–64.

