Timed Functional Modeling for Mixed-Signal Boards in Maintenance Testing Bertrand Gilles, Valérie-Anne Nicolas, Laurent Lemarchand ## ▶ To cite this version: Bertrand Gilles, Valérie-Anne Nicolas, Laurent Lemarchand. Timed Functional Modeling for Mixed-Signal Boards in Maintenance Testing. 7th IEEE Latin-American Test Workshop, LATW 2006, Mar 2006, Buenos Aires, Argentina. p.19. hal-00607320 ## HAL Id: hal-00607320 https://hal.univ-brest.fr/hal-00607320 Submitted on 8 Jul 2011 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ## **Timed Functional Modeling for Mixed-Signal Boards in Maintenance Testing** Bertrand Gilles Valérie-Anne Nicolas Laurent Lemarchand Lionel Marcé EA3883 LISYC - Département Informatique - Université de Bretagne Occidentale 20 avenue Le Gorgeu - CS 93837 - 29238 Brest Cedex 3 France {gilles|vnicolas|lemarch|marce}@univ-brest.fr #### **Abstract** In the context of maintenance testing and diagnosis of faulty boards, a functional FSM (Finite State Machine)-based model for mixed-signal boards has been introduced [1]. It has been extended for dealing with time sequences aspects. In this paper, the new modeling technique is presented. #### 1. Introduction Numerous test methods and techniques have been developed for circuit test [2, 3], associated to the different stages of product life-cycle, mainly at design and production levels. Surprisingly, not much interest has been thrown into testing during the maintenance stage. However, maintenance testing has its own specificity. Thus, our work is related to maintenance testing and focus more particularly on mixed-signal boards. The maintenance stage is one of the step constituting the life-cycle of a board. This stage begins after the development/production cycle. Because of this location in the life-cycle, this stage is complex. First, the knowledge about the board is most often reduced for maintenance people: no designer direct knowledge, partial documentation, level of confidentiality (military, commercial aspects). Second, unitary in situ tests are not sufficient because of aged components and their interactions at tolerance limits. Moreover, large complexity of boards and safety aspects in embedded systems (avionics, automotive,...) have to be managed. All of this implies functional testing in order to check the board behavior, and to determine and replace faulty components in case of defective functionality. Since they only make use of the external behavior of the components, functional-based models may address a wide spectrum of situations concerning board maintenance testing: they may be adapted to the amount of information available (component specification levels), to the nature of the components (digital, mixed-signal, or analog) and to the goal of the test (go-nogo, fine-grain diagnosis oriented testing). Functional testing of component is not used during design or production stages because test software development is costly. It is mainly achieved at the system level in order to test the interactions between components and to check if the global system meets its specification requirements. Thus, there is no predefined functional tests available at the board level. Moreover, because of lack of material, diagnosis and repair is often realized in an empirical way. Clearly, specialized tools are needed to guide or automate at least a part of the work involved in the maintenance stage. Our goal is to provide a help to board maintenance testing and diagnosis. We propose a method supported by a semi-automatic tool allowing the functional specification of the board, the definition of testing strategies and the automatic test data set generation. Because automation implies using formalism, the formalism has to be chosen to match background practitioners in order to be really useful. Talking with our industrial partner, we chose the FSM formalism which is well known by testing engineers. We first present the FSM-based functional model for mixed-signal boards. New time modeling features are described next. Then, the model-based ATPG (Automatic Test Pattern Generation) is presented and we comment results obtained on a simple case study. Then, we show the implementation prototype. A discussion on future work ends the paper. #### 2. FSM-based board modeling A board modeling for maintenance ATPG has been proposed in [1]. It relies on FSM-based functional models for the components of mixed-signal boards. ### 2.1. Board level modeling The board is first modeled at the *board level*, as a set of interconnected functional blocks, as depicted in picture 1. In addition to building blocks of the board, some external Figure 1. A board is an assembly of blocks. blocks are needed to model connections between the board primary inputs/outputs (PI/PO) and an automatic test equipment (ATE): external sources which supply input signals, or output measurement points. Blocks are analog, digital or mixed-signal, and may have several inputs and outputs. Oriented links denote data exchanges between components. Signals exchanged on a link are characterized by their amplitude, form, frequency and type. Figure 2. The test pattern generation process. The board checking consists in testing each block individually using its associated FSM-based test model. This test model is created by merging a block functional model and a testing strategy, as depicted in picture 2. Test vectors for a component are generated by covering each transition of the component's test model. Since the block under test is often embedded within the board, without any test access mechanism (e.g. block b3 of picture 1), the functional models of adjacent components are used for justification and propagation of the block I/O up to PI/PO. Final vectors are computed using constraint logic programming (CLP). #### 2.2. Block level modeling The proposed approach for the functional modeling of the components is based on communicating FSM, since these objects are flexible enough to handle various kinds of board specifications. **The functional model** of each component is a set of communicating FSM. The FSM model may be specified with an appropriate graphical user interface (GUI), derivated from some VHDL/AMS subset specification, or instantiated from a parametrized functions library. The latter is mainly used for common analog or mixed-signal blocks. Test vectors lists are also usable. Sometimes, these are the simplest way for specifying blackbox-like blocks functionalities. All of these specification techniques may be mixed, according to the nature of the system components, and to the kind and form of available descriptions for the different blocks. The test model To generate appropriate test vectors for a given component, testing strategies are applied to the functional model [4]. This is realized mainly by extending the functional model FSM at I/O points, with new FSM pieces implementing the testing strategy. The test model for a component results from this merging. Since test patterns generation corresponds to FSM transitions covering, strategies are described as combinations of transitions. As a simplistic example, checking one digital output pin activity corresponds to some test vectors with 1 and some others with 0 for this pin. These vectors are generated from a FSM containing transitions for both the 0-value and the 1-value. ## 2.3. Time aspects From experimented test engineers point of view, it appears that, for at least go-nogo testing, simple time management is often sufficient. In the context of maintenance testing, the modeling of accurate delay values is not necessary. These values are often either useless, or unavailable. The former arises when approximative clock frequency is set by engineer for test run, the latter when the board comes without timing information. However, at least sequences of values are necessary for meeting test requirements. Thus, ordering test data is mandatory. Since the model presented in [1] is based on communicating FSM, it is of interest to model time with such objects. Our first approach to deal with time sequences is based on a simple clock model. Its FSM is similar to a board input model as time may be considered as an external data for the board. Multiple clocks may coexist in the same functional model. The different actions driven by a clock are specified by waiting for the top value on some transition of the receiving FSM. In our modeling, a behavior of the board is represented by a path from PI to PO in a set of communicating FSM. Thus, sensitizing a path leads to cross the clocks edges a number of times and thus to compute dates in terms of number of tops for the associated test data. With this kind of modeling for clocks, time modeling is decoupled from the component modeling. Clock models may be generated automatically and changed easily according to testing needs without modifying the remaining parts of the model. However, this time management may not be sufficient in some cases. Suppose a modeling with two clocks Clk_1 and Clk_2 sending top_1 and top_2 respectively. These tops do not have an associated date (time stamp). The test pattern generation process explained in section 2.4 "asks" for some top events in order to obtain a test data for a component. This test data is a sequence dated in a relative way. Thus, the real dating of the test data comes from the ordering of the top events. If there is no constraint on the periodicity of the two clocks, a consistent timing may be associated to the test data. Otherwise, a generated test data may have a wrong timing because the sequence of top events may be conflicting with the period of each type of event. A first approach to solve this problem is to increase the algorithmic complexity of the generation process in order to eliminate wrong sequences. An alternative approach consists in using time stamped events with a same time reference. Thus, the test data is dated in an absolute way. We choose the second approach in order to control the algorithmic complexity. Thus, we propose to manage time stamped events. This is achieved by using timed automata [5]. Indeed, timed automata allow to specify time-dependant behaviors with clocks (like periods) using the same time reference. This approach is illustrated on the case study (see section 3). #### 2.4. Model-based ATPG As explained in section 2.1, ATPG is achieved by covering the test models. Covering a transition leads to meet the associated data constraints. The constraints are propagated up to the board's PI/PO, also modeled as FSM. The problem of test data generation is faced using CLP and classical algorithms for finite state machines (transition coverage, state coverage, path coverage). Thanks to CLP, test data are represented in a symbolic way, using ranges of values, dealing efficiently with analog and digital data representations in an uniform way. Ranges of vectors are computed for reaching the test requirements. Actual values are defined at the end, making possible to take into account some ATE specificities. ## 3. Case study: The tachy board The modeling technique, extended for dealing with time sequences aspects (see section 2.3) has been applied to a simple industrial case study. In this section, we give a brief informal description of the *Tachy board* and comment the expected board testing results. Interested reader may refer to [6] in order to have a more complete and detailed view of the functional modeling and testing strategies involved in this case study. #### 3.1. Board Description The Tachy board is a mixed-signal board. It has four-teen analog channels receiving DC signals coming from tachymetric generators. The main function of the board is to check in a cyclic way the values of input signals by comparing them to two voltage thresholds and write into RAM memory the time stamped number of each faulty channel. A channel is faulty if its analog signal is not between the two thresholds. The RAM memory is reseted every six minutes. The new technique, undertaking time sequences aspects better, makes possible to deal with the last point (which was not considered in [1]). #### 3.2. Board Testing For sake of simplicity and conciseness, we are presenting results for a three channels restricted version of the board. This restriction has no incidence on the complexity of the modeling and testing process [6]. The test data set of the board generated with our method is: $TDS = \{TD_1, TD_2, TD_3, TD_4, TD_5\}$ with: $$TD_1 = \quad (In = \quad ((\tau_{11} - \delta,?,?,top(z_1), _), \\ \quad (?,\tau_{12} - \delta,?,top(z_2), _), \\ \quad (?,?,\tau_{13} - \delta,top(z_3), _)), \\ Out = \quad (([1,z_1],?,?),([1,z_1],[1,z_2],?), \\ \quad ([1,z_1],[1,z_2],[1,z_3]))) \\ \text{with} \quad \forall k. \qquad 6k \notin [z_1,z_3] \text{ and } z_1 < z_2 < z_3 \\ TD_2 \text{ is like } TD_1 \text{ replacing } \tau_{1i} - \delta \text{ by } \tau_{2i} + \delta. \\ TD_3 = \quad (In = \quad (?,?,?,_,reset(z)), \\ \quad Out = \quad ([0,z],[0,z],[0,z])) \\ \text{with} \quad \exists k. \ z = 6k \\ TD_4 = \quad (In = \quad ((\tau_{11} + \delta,?,?,top(z_1),_), \\ \quad (?,\tau_{12} + \delta,?,top(z_2),_), \\ \quad (?,?,\tau_{13} + \delta,top(z_3),_)), \\ \quad Out = \quad (([?,z_1],?,?),([?,z_1],[?,z_2],?), \\ \quad ([?,z_1],[?,z_2],[?,z_3]))) \\ \text{with} \quad \forall k. \qquad 6k \notin [z_1,z_3] \text{ and } z_1 < z_2 < z_3$$ TD_5 is like TD_4 replacing $\tau_{1i} + \delta$ by $\tau_{2i} - \delta$. An input 5-tuple has the form (S_1,S_2,S_3,Clk,Rst) and an output 3-tuple has the form (MP_1,MP_2,MP_3) where S_1,S_2,S_3 are the three analog sources, Clk the clock signal, Rst the reset command, and MP_1,MP_2,MP_3 the three digital measurement points (memory state). ? stands for an unspecified value and $_$ stands for no input value. τ_{1i} and τ_{2i} are the thresholds of a comparator C_i (associated with source S_i). TD_1 means that three input test vectors are executed sequentially on the board, and that three corresponding output vectors are then observed (more explanations in [6]). TD_1 and TD_2 test faulty behaviors (thresholds exceeding for all channels). TD_4 and TD_5 test good behaviors (for all channels). TD_3 test the reset command. We thus consider that this test data set is sufficient to test the board. The size of each test data of TDS is minimal, but we could have generated fewer test data with a bigger size. However, TD_4 and TD_5 may seem meaningless as they succeed whatever their output values. This is because there is no writing in memory for good input values, and thus memory keeps its initial state, which is not defined in TD_4 and TD_5 . One improvement may be to sequence TD_3 before TD_4 and TD_5 to fix an initial memory state. The resulting test data set of the board would then be: $TDS' = \{TD_1, TD_2, TD_{34}, TD_{35}\}$ with TD_1 and TD_2 as previously defined and ``` \begin{array}{lll} TD_{34} = & (In = & (?,?,?,_,reset(z)), \\ & & (\tau_{11} + \delta,?,?,top(z_1),_), \\ & & (?,\tau_{12} + \delta,?,top(z_2),_), \\ & & (?,?,\tau_{13} + \delta,top(z_3),_)), \\ Out = & (([0,z],[0,z],[0,z]), \\ & & ([0,z_1],[0,z],[0,z]), \\ & & ([0,z_1],[0,z_2],[0,z]), \\ & & ([0,z_1],[0,z_2],[0,z]))) \\ & \text{with} & \exists k_1. & z = 6k_1 \\ & \text{with} & \forall k. & 6k \notin [z_1,z_3] \text{ and } z < z_1 < z_2 < z_3 \\ \end{array} ``` TD_{35} is like TD_{34} replacing $\tau_{1i} + \delta$ by $\tau_{2i} - \delta$. #### 4. Prototype We have partially implemented the FSM-based board modeling, the model-based ATPG and time management in a prototype tool. This prototype provides a GUI allowing high level description of mixed-signal boards. In addition, the GUI includes some facilities for the choice of a testing strategy, for the description of the board-ATE connection and for the description of the data (signals) flow. The GUI part of the prototype is written in C++ with the ILOG Views graphic library [7] and the ATPG part is implemented using CLP with the solver ECL^iPS^e [8]. The prototype, which is still under development, has already been used in simple industrial case studies [1, 4]. #### 5. Conclusion and future work We have presented a method for the testing of mixedsignal boards in a maintenance context. An approach using timed automata has been proposed to deal with simple time aspects. In particular, it allows the modeling and testing in presence of multiple clocks (dependant or not) with different periods. The method has been validated on two simple industrial case studies. Nevertheless, we are also prospecting for improved testing strategies. Another objective is to extend the models to take into account more complex boards. Further work is required on industrial cases to validate the approach and exhibit its limits. #### Acknowledgements We wish to acknowledge the support provided by the Brittany Regional Council (France) under contract number 20041592, and Bruno Castel and Michel Le Goff from ISIS-MPP for their contribution to this project. #### References - [1] B. Gilles, V.-A. Nicolas, L. Lemarchand, L. Marcé, and B. Castel. Towards a New Modelling of Mixed-Signal Boards For Maintenance Testing. In *Proceedings of the 11th IEEE International Mixed-Signals Testing Workshop, IMSTW'05*, pages 90–97, June 2005. - [2] Mark Burns and Gordon W. Roberts. *An Introduction to Mixed-Signal IC Test and Measurement*. The Oxford Series in Electrical and Computer Engineering. Oxford University Press, 2001. - [3] M. L. Bushnell and V. D. Agrawal. Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits. Springer, 2000. - [4] V.-A. Nicolas, B. Gilles, L. Lemarchand, L. Marcé, and B. Castel. A Maintenance-Oriented Board Testing Approach. In *Proceedings of the 3rd IEEE International East-West Design and Test Workshop, EWDTW'05*, pages 143–147, September 2005. - [5] Rajeev Alur and David L. Dill. A theory of timed automata. *Theoretical Computer Science*, 126(2):183–235, 1994. - [6] B. Gilles, V-A. Nicolas, L. Lemarchand, and L. Marcé. Timed functional modeling for mixed-signal boards in maintenance testing: A case study. Technical report, LISYC, http://www.ea3883.univ-brest.fr/ea3883.htm, February 2006. - [7] ILOG. ILOG Views Fundation 5.0 User's Manual, 2002. - [8] A. M. Cheadle, W. Harvey, A.J. Sadler, J. Schimpf, K. Shen, and M.G. Wallace. Eclipse: An Introduction. Technical Report IC-Parc-03-1, IC-Parc, Imperial College London, 2003.