
HAL Id: hal-00502064
https://hal.univ-brest.fr/hal-00502064

Submitted on 13 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An infrastructure for planning, monitoring and reusing
capstone projects with the help of semantic wikis

Jean-Hugues Belpois, Vincent Ribaud, Philippe Saliou

To cite this version:
Jean-Hugues Belpois, Vincent Ribaud, Philippe Saliou. An infrastructure for planning, monitoring
and reusing capstone projects with the help of semantic wikis. Wikis4SE: Wiki4SE - ICSE 2009, May
2009, United States. pp.91-100. �hal-00502064�

https://hal.univ-brest.fr/hal-00502064
https://hal.archives-ouvertes.fr

An infrastructure for planning, monitoring and reus ing capstone projects
with the help of semantic wikis

Jean-Hugues Belpois, Vincent Ribaud, Philippe Saliou
University of Brest, Computer Science Department, C.S. 93837, 29238 Brest Cedex 3

{Jean-Hugues.Belpois, Vincent.Ribaud, Philippe.Saliou}@univ-brest.fr

Abstract

The capstone project provides students, working in

groups, with a significant project experience. Students
should deliver one or several iterations of a software
system, along with all artifacts appropriate to the
process model they are using. A system based on
reference and organizational models and powered by
three semantic wikis (using SMW) is used to help the
drive of capstone projects. This paper describes
aspects raised by challenges of capstone projects
management and presents the infrastructure of the
solution we built.

1. Introduction

The Software Engineering 2004 Volume [1] states

that a capstone project course is essential in a software
engineering degree program. The capstone course
provides students with the opportunity to undertake a
significant software engineering project, in which they
will deepen their knowledge of many software
engineering areas. At Brest University, the final year of
the Software Engineering Master’s programme
includes a 4-months project, performed by a 6-students
team within a virtual company and tutored by an
experimented software engineer.

Planning, monitoring and reporting these capstone
projects involve different kinds of stakeholders
(faculty, coaches, students) communicating and
collaborating with the help of office software suites,
collaborative tools and distributed systems.

Since 2002, we made several attempts to build a
dedicated information system intended to manage the
SE master’s reference framework, project planning,
periodic reporting and assessment support.
Requirements were changing over the time and the
system suffered of brittleness. Instead of this feature-
rich system, we moved to an “as simple as possible”
system using semantic wikis.

Section 2 drafts some challenges of the drive of
capstone projects, mainly: reuse of parts of past
projects, project planning with regularly updates,
project monitoring. Section 3 relates wiki (and
semantic wiki) use in software engineering, hence
providing a description of related work. Section 4
describes the structure of the three semantic wikis used
and the inter-wiki links. Section 5 states the technical
problems: multilingual issues; copyright, access control
and rights management; electronic and real resources
management; reasoning capabilities. We conclude with
some perspectives and final remarks.

2. Challenges of capstone projects’ drive

2.1. Our capstone project structure

In most capstone project courses, students must

manage the project themselves, following all
appropriate project management techniques. Also,
students should be expected to deliver one or several
iterations of a software system, along with all artifacts
appropriate to the process model they had selected [1].

But, in our system, neither are the students
managing the project, nor may they choose the process
model and appropriate artifacts to be delivered. The
process reference model is adapted and simplified from
ISO/IEC 12207; we are using 13 processes organized
with 3 process groups: Development Engineering,
Project Management and Development Support. A list
of processes is given at the beginning of section 4.

We use a Y-shaped life cycle that separates
resolution of technical issues from resolution of feature
issues [15]. First, the cycle is divided into two branches
(tracks): a functional track and a technical track. Then
these two tracks amalgamate for the realization of the
system.

The Y-shaped life cycle is temporally organized in 9
stages of 2 weeks each. Each stage is divided in several
scenes that carry on activities belonging to the three

process groups. Each stage is named from the main
activity occurring at this stage. The temporal
organization is: Stage 0: Warm-up; Stage 1: Project
set-up; Stage 2: Requirement capture; Stage 3:
Technical architecture; Stage 4: Requirement analysis;
Stage 5: Design; Stage 6: Realization; Stage 7: Tests -
Integration; Stage 8: Verification &Validation.

In software studios or capstone projects, the
instructor’s role is more of a mentor, or, better a coach
[18] . We are very closed to Tomayko’s work and most
observations pointed out in his “Software Development
Studio 5-year Retrospective” apply to our system: “The
use of a well-established development process, a matrix
organization, and one-to-one mentoring give the
highest return on investment [18]”. However, our
system adds several dimensions to the coach’s role
because organizing and supervising the stage/scene
cycle is devoted to the coach together with the
individual monitoring of each student’s competency
development.

2.2. A model of small software project

The two latter authors practised software
engineering as project managers for nearly ten years in
a small department of a software company. The
organization was typical of a Very Small Enterprise
(VSE): one manager acting sometimes as a project
manager, three software project managers, between 6
and 12 software developers. The only difference with a
VSE was the existence of a corporate baseline – but far
unknown of most department employees.

In such a small organization, there are two views of
projects that we may call “external” and “internal”. The
external view sees a project as a black box: starting and
stopping dates, inputs and outputs work products,
resources needed or provided, cost, milestone … Some
of its elements are represented in the upper-level of
figure 1. The internal view has to see the project as a
white box and deals with all aspects related to the 5 W
+ 2 H: Who, What, When, Where and Why plus How
and How much. This view is generally structured with
the help of a WBS (Working Breakdown Structure: “a
deliverable-oriented hierarchical decomposition of the
work to be executed by the project team to accomplish
the project objectives and create the required
deliverables. It organizes and defines the total scope of
the project” [5]. Elements of this internal view are
represented in the lower-level of figure 1.

This paper presents a set of interlinked semantic
wikis intended to sustain the progress of capstone
projects. A wiki is basically a set of pages
interconnected with links and a semantic wiki allows us

to give different meanings to links and to value a set of
properties associated with each page (typically called
metadata).

Our capstone project is intended to simulate as far
as possible a small software project. According to the
simplified model presented at the beginning of this
section, we may distinguish two levels of concerns,
each associated with a set of stakeholders.

The external level may be called the “programme
level” and main stakeholders are academic staff. Its
concerns are two-fold: about Master programme
objectives, structure and assessment and about
programme activation with a set of different projects,
each of them associated with its proper processes,
stages, people, tools and obviously the statement of
work of the project. Creating and updating information
at this level is under the responsibility of the academic
staff of coaches. Searching, retrieving and consulting
information is for everyone, but the main interest is for
project team mates.

Id : string

Title : string

Purpose : string

Outcomes : string

ReferencesProcess

ReferencesActivity

ILI Process

Id : string

Title : string

Description : string

Step-of-action

Title : string

SE Activity

Title : string

DtStart : Date

DtEnd : Date

CMSWorkSpace : string

Stage

Id : string

Title : string

DtStart : Date

DtEnd : Date

WorkCard : Object

Scene

*

Id : string

Title : string

Description : string

CMSWorkSpace : string

Artifact

*

Input-Output *

*

Happens

*

-Decomposed Into

*

*

*

**

Id : string

Title : string

Description : string

Course-of-action Unit

PrefName : string

Mbox : string

Person

Title : string

Description : string

Project

*

-Collective *

-Organizes*

* Input-Output*

Performed

Activity

*

Works

*

Id : string

Title : string

ILI Process Group*

Id : string

Title : string

Description : string

Exemplar Activity

*

1

*

Id : string

Title : string

Purpose : string

Outcomes : string

12207 Process
Id : string

Title : string

12207 Activity

Id : string

Form : string

12207 Task **

Id : string

Title : string

12207 Process Group*

*
ComesFrom1Id : string

Title : string

Description : string

Outcomes : string

15504 Base Practices

*

*

IsInspiredFrom*
*

IsInspiredFrom

*
1

IsPartOf*

Figure 1. The upper half depicts reference models (issued from
12207 and 15504 standards) and the external view of a project. The
lower half represents the internal view of an enacted project. Input
and output work product (artifact) are associated to the scene, the
activity and the process. Students reports on the course of their
activity through a structure of steps of course-of-action units.

The internal level may be called the “enactment
level” whom main stakeholders are the project team

(students) and its coach (faculty). This level is
concerned with the project execution, its day-to-day
life, inputs, outputs, events and processes. Creating a
first shape of information at this level is under the
responsibility of the team coach because it corresponds
to the information that may be found in an initial WBS.
Then information of this level are created, updated,
retrieved and used by the whole software team.

The rest of this section presents challenges and

important outcomes in reuse, planning and monitoring
together with requirements for supporting these
practices.

2.3. Reuse of parts of past capstone projects

B. Meyer states that “a long-term project should

involve the reuse, understanding, modification, and
extension of existing software. The best way to achieve
this goal is to imagine the project running over several
years, with each new class taking over the result of the
preceding one and developing it further” [10].

In order to achieve this goal, coaches have to
establish a reuse policy and to systematically exploit
reuse opportunities. As an example, an important
feature for the coach is that a new group can redo part
of a preceding work and that previous results can be
used in order to help them.
An asset is an item of interest that is stored in a reuse
library or any other unit of information of potential
value to a re-user. An Asset Management Process
should establish an asset classification scheme, provide
an asset storage and retrieval and record asset changes
[3, p.78]. Keeping in mind the scope of our system
(helping the progress of capstone projects), we state
that our reuse challenges are about classifying,
recording, locating, and sharing assets.

2.4. Capstone project planning

In our system, before a capstone project starts, the

coach has to define the new project in which the
students will be immersed; to prepare the logistics
necessary for the smooth running of the service; to
tailor the learning process in order to fit with project’s
constraints and learning objectives.

In capstone projects, the coach aims to achieve
learning objectives rather than project objectives. In
our system, the coach establishes a general planning of
the development cycle and provides a structured
breakdown of work in small units. Each unit comprises:
the definition of work to be undertaken, the expected
products, and pedagogical resources (e.g., guidelines,

examples). This WBS is similar to a real WBS but also
different inasmuch as it incorporates needs induced by
our learning system. Once the project is running, the
whole team has to update the structure with the enacted
events and this activity is information management
rather project management. Challenges are about the
activities people perform in order to produce, organize,
maintain, retrieve and use information items.

2.5. Capstone project monitoring

The Merriam-Webster Online Dictionary defines the

verb monitor as “to watch, keep track of, or check
usually for a special purpose”. What we want first is to
monitor – to gather information and to report it.
Reporting may serve various purposes that are, for the
moment, out of scope of this paper.

Capstone project management is primarily
concerned with learning objectives and specific
constraints such as students’ abilities development or
coaches’ help that have to scaffold students’ activity
when required and gradually decrease help (un-
scaffold). Hence, the monitoring should be focused on
these topics. The best source of information comes
from the students themselves reporting on what they
did and why. Thus, monitoring is primarily concerned
with features that help to capture, secure, distribute and
archive information.

3. Wiki use in software engineering

In this section, we relate wiki (and semantic wiki)

use in software engineering. Rauschmayer reports that
wikis are generally used for: collecting data or
knowledge; coordination, planning, project
management; web site, light-weight content-
management system; document editing; discussion,
forum; whiteboard [13]. In the field of software
engineering, wikis use helps to manage software
projects, software lifecycle documentation, code
reference information, bug tracking, and supports
communication around the project members.

Regarding challenges of section 2 and usages listed

above, we relate several uses of wikis with our
objectives: reuse is addressed through documentation
management, planning through publication-oriented
management and monitoring through experience
management. In order to facilitate the reach of these
challenges, we propose a very simple architecture
based on the use of several inter-linked semantic wikis.
The use of a Content Management System (CMS) was
envisaged but was not necessary.

Lanier argued that “software as we know it is a
brittle substance. It breaks before it bends” [7]. The
antidote to brittle software systems might be to start
from (and keep) the simpler option. Maxwell [9]
pointed out that “Our experience with and reflection on
using wiki as a platform suggests that there is much to
be gained from an approach which builds up from
simple foundations rather than attempting to customize
an already-complex architecture [9]”. We agree with
this point of view and we recommend starting a
content-based project with wikis, “a system which
makes almost no expectations and which poses almost
no restrictions on its users [9]”.

Reuse. Challenges of using wikis to tackle reuse in
software projects are related in [14] with recording,
reusing, locating and sharing information. Difficulties
related to locating reusable components which satisfy a
given requirement, assessing their relevance, and
adapting them to the current task are still high. We
agree with [11] which believe “that the retrieval
difficulty is related to the crucial problem of interaction
between component providers and users”. As related in
§2.3, coaches wish primarily to reuse previous
documentation artifacts and we propose to use
documentation management principles as a basis to
facilitate this reuse process. Documentation
management aims to establish standards and
requirements for documents, to identify, develop,
check, distribute and maintain documents [4,
Documentation Base Practices, p. 50].

Wikis are often used for software documentation
management. Strengths come from built-in mechanisms
to maintain control over documentation artifacts. When
there is a need for an editorial workflow, a CMS may
be preferable. But in our case, we need to maintain a
Web-based remote repository, to manage versions of
documents with an access to previous versions, to
define relationships between various documents, to
have flexibility to adapt the structure and relationships
after the course of projects. The two former points are
achieved with the use of traditional wikis, the two latter
requires adding semantic to wikis. As an example,
students may have to perform a retro-design of a piece
of software built in previous projects and should have
an access to the successive versions of the code
documentation (linked to the code in a configuration
tool). This is a traditional wiki use that can be
enhanced with semantic annotations such as authors,
dates, notes about different versions and semantic links
between a given version and the version of the
requirements document used. Semantic wikis combine
a static classification based on the internal structure of

the repository and a dynamic classification when it is
needed. It means, for example, that coaches may be
able to re-build a “knowledge path” through existing
artifacts, highlighting with the help of semantic
properties the important information useful for new
students.

Planning. As mentioned in §2.4, project planning is

intended to prepare the execution of the project. It shall
contain description of associated activities and tasks
and identification of the software products (artifacts)
that will be provided (or needed) [3, Project Planning
Process, p. 32]. These descriptions and artifacts have to
be kept up-to-date as the project goes along. These
issues are closed to those of a publication-oriented
system. As we wish to keep this kind of publication
system “as simple as possible” and to rely on wikis
rather on a dedicated (and probably complex) system,
we believe as mentioned in [9] that “the strategy of
building larger-scale editorial structures on the
thinnest of technological foundations seems to also
mean that the work of organizing and managing the
content in the system can remain an editorial process,
rather than a technical administration task”. In other
words, it means that the organization of content, design
of site navigation, and the ongoing management of
contributions and changes should be handled by a staff
of authors (students and coach), not by a technical one.
We have to define the editorial process: what
information has to be delivered or gathered and
reported, when it should happen and which role is
assigned to different information management tasks.
The wiki literature has a humoristic folklore about the
roles played in a wiki, but at least three roles are
indispensable: gardener – one who spends time
attending to the quality, flow, and overall polish of
content on a wiki; champion – able to generate interest,
give the training, monitor growth and fix problems;
maintainer – a person assigned or self-assigned to a
page, space or section of a wiki who accountably takes
responsibility for the quality of some of the content
[17] , [22]. Coaches act as champions, students
naturally as maintainers and gardener’s role should be
specifically entrusted to team members. For example,
at the beginning of each stage (2 weeks), the coach
creates a set of wikis pages corresponding to the
envisaged work scenes and estimated attributes such as
workload, resources and link pages to assigned
students’ pages. At the stage end, students update
pages, attributes and links to reflect the enacted stage.
A gardener is assigned to each stage in order to keep it
as sound as possible.

Monitoring. According to [12], “Capstone projects
have shown to support self-directed and experiential
learning, where students reflect and interpret their
experiences to build abstractions […], which are
applied and tested in new situations and which provide
the foundation for having new experiences”.

Reflective skills [16] are skills to be learned by the
students, in addition to the technical skills of software
engineering. In [12], Ras and al. present SOP, an
adapted Wiki for information and experience
management in software projects. SOP serves as a
means to capture observations and share all kinds of
information relevant to the project such as roles and
process descriptions, documentation templates and
guidelines, observations and experiences on software
engineering (SE) technologies, etc. This kind of
information is recorded at the programme level (cf. §
2.2) but we wish to enhance this experience
management with the recording of day-to-day events of
projects. We believe that only a preliminary structure
can be fixed at the beginning of the project and the
structure of the content, navigation paths and
contributions management will – and should – change
during the project, incrementally and often. Wiki
content may be not reflect a sound and complete
system but it corresponds to the life of a project and
provides the required simplicity and flexibility. This
experience gathering is intended to stimulate a
reflective thought but discussion about this goal is out
the scope of this paper. Interested readers may refer to
[12], [16], [20].

4. Semantic wikis for capstone projects

4.1. A simple model of capstone project

Before the description of the role of wikis and the

inter-wiki links, we need to explain how the learning
process of our capstone project fits with the project
organization.

From the 43 processes of ISO/IEC 12207:2008, we
concentrate on those related to the software
development cycle, that is: 6.2.2 Infrastructure
Management, 6.3.1 Project Planning, 6.4.1 Stakeholder
Requirements Definition, 6.4.4 Implementation Process
replaced by 7.1.1 Software (SW) Implementation
Process and its 6 sub-processes, 7.2.1 SW
Documentation Management, 7.2.2 SW Configuration
Management, 7.2.3 SW Quality Assurance, 7.2.4 and
7.2.5 SW Verification & Validation.

Each process above can be analyzed from different
points of view: expected knowledge and skills;
stakeholders’ roles; input and output deliverables;

required tools and resources. At work, what makes
sense for these multiple point of views is their
articulation within the activity situation (the cohesion
of the work situation). In an apprenticeship project, it is
also the (learning) situation which leads to an
understanding of the multi-dimensional nature of
activity. The capstone project is a theatre play where
the different actors learn to play their roles. We
carefully designed a set of learning scenes which are
the reference context where part of the play happens.
The scene aims at a unity of place, time and action; the
scene is together a situation where students learn and
do, a scenario of actions, a role distribution, an area
mobilizing resources and means. As an example,
consider the “Design tailoring” scene, students have to
write a usage guide from the design activity as it is
proposed in the Unified Process, then retro-engineering
the code of a project performed last year in order to
produce a design document for this project.

Several scenes happen simultaneously. During the
same period of time, students work in subgroups on
different scenes belonging to different processes. As
stated at the beginning of section 2, the complete cycle
of scenes is temporally organized into stages. As an
example, let us see what generally happen during the
stage 5 “Design”. Typical scenes are listed in table 1
with the name of the scene in column 1, the process
where the activity fits in column 2, the reference to the
12207 process in column 3. In order to materialize the
group process dimension, the table 1 is divided in 3
sub-tables – one per group process.

Scene Process 12207

Group process : Project Management

Configuration tool set-up
SW configuration

management 7.2.2
Scene Process 12207

Group process : Development Engineering
Requirements update Requirements

capture
7.1.2

Design tailoring Design 7.1.4
Database design Design 7.1.4

SW Design Design 7.1.4
Software Test Plan

Elaboration
Integration-

Qualification
7.1.7

Scene Process 12207
Group process : Development Support

System and networking
support

System and
networking support

6.2.2

Modelling and
development rules

Methods and tools
support

7.3.1

Table 1. Typical scenes at stage 5.

4.2. 12207 – life cycle processes wiki

A process reference model, issued from ISO/IEC

12207 standard [3] is represented in the 12207 wiki
and provides the description of software life cycle
processes, activities and tasks for software used as a
stand-alone entity, or an embedded or integral part of
the total system. The processes in the 12207 standard
form a comprehensive set. An organization, depending
on its purpose, can select an appropriate subset to
fulfill that purpose. The 12207 was used and filled for
the first time this academic year. This wiki
(http://oysterz.univ-brest.fr/12207) is a hypertext
reference of the ISO/IEC 12207:2008 for the process
level: title, purpose, list of outcomes and process
decomposition in activities and tasks; it may be reused
“as it is” for the next projects.

4.3. 24765 – vocabulary wiki

The 24765 wiki (http://oysterz.univ-brest.fr/24765)

contains a glossary of technical terms used in the
capstone projects. This wiki was pre-populated with the
terms used in the ISO/IEC 12207 (56 terms), and then
augmented with terms used in the Software
Engineering Master Programme and inside capstone
projects. The 24765 standard provides a descriptive
vocabulary in English of the terms as they are currently
defined in approved software and systems engineering
standards of ISO/IEC SC7 (sub-committee for software
engineering) and the IEEE Computer Society. The
descriptive vocabulary may contain several definitions
of the same term as found in the existing standards.
This wiki is actually under reengineering but ISO
provides on-line Software Engineering Vocabulary
(SEVOCAB) at http://pascal.computer.org/sev_display.

4.4. Capstone projects wiki

In our capstone projects, there are two hierarchical

decompositions that are linked; the former is an activity
model adapted from the ISO/IEC 12207: process
group, process, activity and task; the latter is an
organizational model: project, stage, scene, and step. A
scene is related to a single process but aims to mobilize
several practices of the process. Conversely, a practice
can be undertaken within several scenes of the same
process.

The third wiki is used to manage information on
project progress. We can distinguish several levels in
the structure concerning different stakeholders:

• An upper-level structure of group process / process
(reference framework) and project / stage (year’s
organization), under the control of the programme
manager.
• A mid-level structure acting as a simple but realistic
model of a project: breakdown of the project stages
into work scenes; membership of project and allocation
of persons to scenes; expected inputs and outputs. Each
coach of a capstone project fills this structure with
instances (wiki pages) corresponding to his/her project
plan and has to update it regularly.
• The lower-level structure deals with the activity
performed by project’s members (students in this case):
who, what, when, and how they did the tasks required
by the work scene together with delivered inputs and
outputs; this reporting is written by each member at the
end of each stage (typically each 2 weeks).

Many inter-wiki links facilitate navigation and
information retrieval.

5. Technical problems

This section presents technical problems raised by

challenges of capstone projects management, listed in
section 2.

We use Semantic MediaWiki (SMW) [7], an
extension to MediaWiki. Semantic MediaWiki enables
wiki-users to semantically annotate wiki pages. Thanks
to semantic annotations (metadata), the wiki contents
can be browsed, searched, and reused in novel ways
[7]. Every semantic annotation within SMW, such as
for instance Vince Turtle is author of the Requirement
document, is a RDF triple - of the form <subject,
predicate, object> (<Vince Turtle, author, Requirement
document>) - connecting through a property (here the
property author) the subject’s page (here, the page
related to the user Vince Turtle) to another page (here
the page depicting and providing access to the
Requirement document) or a data value (for instance, a
date). In MediaWiki, categories classify articles
according to their content; hence SMW categories are
considered as OWL classes.

5.1. Multilingual issues

Multilingual issues are required in 12207 and 24765

wikis. Standard are usually published in English, and
translations are built on an identical structure (chapter,
section …) than the English version.

In the ISO/IEC 12207, parts of standards are
identified by hierarchical identifiers (e.g. 7.1.4 –
Design) and an identifier (together with a language
code) can be used to identify the same part in different

translations (e.g. 7.1.4/fr – Conception – in French).
MediaWiki provides a language management extension
that is used to map parallel structures between
translations.

In the case of the 24765 vocabulary, we follow the
approach prone by IFLA [21] of a symmetrical
thesaurus. All different language versions of a
multilingual thesaurus are identical and symmetrical;
each descriptor has one and only one equivalent in
every language and is related in the same way to other
descriptors in the given language. The 24765 wiki is
structured with the skos vocabulary [20] and the
transitive property skos:exactMatch is used to link each
descriptor in every language to the English descriptor.

5.2. Copyright, access control and rights
management

MediaWiki is not designed to be a CMS. To the

contrary, it was designed to be as open as possible but
it supports enough protection of private content for our
purposes.
• Wiki 12207 reproduces parts of an ISO/IEC
standard that is subject to copyright. The copy licensed
to the University of Brest does not allow us to
distribute any part of the standard outside of the
University and access to this wiki needs to be restricted
to coaches and students (registered users).
• For the ISO/IEC 24765, the primary tool for
maintaining this vocabulary is a database that is
modified in a controlled fashion. Hosted by the IEEE
Computer Society, the SEVOCAB (Systems and
software engineering vocabulary) database is publicly
accessible at www.computer.org/sevocab. ISO/IEC
24765 is issued periodically as a formal, published
International Standard reflecting a "snapshot" of the
database. The copyright notice provided with the
database permits users to copy definitions from the
database as long as the source of the definition is cited
[5]. Hence, Wiki 24765 can reproduce a subset of the
vocabulary with its source and let access to anyone.
• The wiki dedicated to project management has three
levels composed of several spaces of articles with
different requirements for access control and rights
management. We use namespace to separate the
different spaces. The programme manager, each coach
and each group of students is associated with its own
namespace. Pages are stored within a given namespace
and access right is controlled for each namespace and
each group through the use of a MediaWiki extension.

5.3. Electronic and real resources management

MediaWiki does not provide a good way to handle
download and upload of electronic resources. It is
possible to upload them using the image uploading
feature, but it has limits. Moreover, software project
artifacts have different types (documents, web pages,
code files …) and it requires a dedicated management
system. We use the file system to handle project
artifacts excepted for code files where we use the
Subversion software as a version control system. This
allows to link wiki pages with URL referencing folders
in the file system or spaces handled in Subversion,
providing required version management. However, it
may be not sufficient to refer electronic resources by
URL because additional information on the resource is
needed (such as the language, the format …).
Moreover, we may refer to real resources such as books
or persons. Using URN to identify resources gives us
the ability to annotate resources with additional
metadata. Hence, each resource is associated with a
wiki page and the URL of that page is used as an URI
for the resource. This associated page works as a
metadata record and domain-independent metadata are
controlled by the Dublin Core metadata terms
vocabulary (http://dublincore.org/documents/dcmi-
terms). Other types of resource (e.g. a Person) may use
popular vocabularies over the internet (e.g. foaf). It
requires a vocabulary management inside the semantic
wikis and abilities to import and export RDF, features
that SMW provide.

5.4. Reasoning capabilities

One way to organize the organic growth of Wiki

content is to add structure by enriching Wiki-pages
with additional metadata. It is often enough to conceive
the proposed “semantic approach” as extend your Wiki
with RDF [3]. Providing RDF metadata requires
additional effort and the main benefit is an application
of reasoning mechanisms. Except for sub-properties,
RDF reasoning capabilities in SMW are poor and three
crucial features are missing: inverse properties (e.g.
dc:hasPart/dc:isPartOf), symmetric properties (e.g.
foaf:knows), transitive properties (e.g.
skos:exactMatch). The main problem is that these kinds
of properties violate the Wiki principle of locality:
changes made to a page content are not allowed to
affect other pages’ content. But, as these kinds of
properties involve two pages, annotating a page should
lead to annotate the other page consistently. We solve
this problem by using an annotation in only one of the
two pages and using inline queries in the other one. For
instance, activities (requirement gathering, requirement
elicitation ...) are belonging to a single process

(requirement process), we link with a property each
activity to its corresponding process and we use a
query retrieving all activity for a given value of process
to build the inverse property. Semantic MediaWiki
includes a simple RDF query language for semantic
search, so that users can directly request certain
information from the wiki. So it is possible to rebuild
the other part of inverse, symmetric or transitive
properties by using queries (it needs to republish the
page in order to force the system to compute up-to-date
values).

6. Conclusion

Three semantic wikis are used as an infrastructure

intended to facilitate the drive of capstone projects:
planning, monitoring and reuse. Our capstone project
uses a 13-process reference model adapted of the
ISO/IEC 12207 standard. The project organization is
decomposed in stages and scenes and follows a Y-
shaped lifecycle. Based on this reference model and
this organization, our wiki-based infrastructure
addresses reuse through documentation management,
planning through publication-oriented management and
monitoring through experience management. An
important requirement is to keep the technical solution
‘as simple as possible’. Solid structure and simple
architecture let the system be easy-to-use and easy-to-
evolve.

7. Acknowledgement
The authors wish to thank the anonymous referees

for the constructive and helpful comments that led to
restructure part of the manuscript and to improve the
final result.

8. References

[1] ACM and IEEE, Software Engineering 2004,
http://sites.computer.org/ccse (last accessed February, 2008).

[2] B. Decker, E. Ras, J. Rech, B. Klein, and C. Hoecht,
“Self-organized Reuse of Software Engineering Knowledge
Supported by Semantic Wikis”, IESE-Report, 115.05/E,
Fraunhofer Institute, Kaiserslautern, 2005.

[3] ISO/IEC 12207:2008, “Information technology --
Software life cycle processes”, International Organization for
Standardization (ISO), Geneva, 2008.

[4] ISO/IEC 15504:2004, “Information technology -- Process
assessment”. International Organization for Standardization
(ISO), Geneva, 2004.

[5] ISO/IEC FCD 24765, “Systems and software engineering
-- Vocabulary”, International Organization for
Standardization (ISO), Geneva, 2008.

[6] M. Krötzsch, D. Vrandecic, M. Völkel, H. Haller, and R.
Studer, “Semantic Wikipedia”, Journal of Web Semantics
5/2007, Elsevier, Amsterdam, 2007, pp. 251–261.

[7] J. Lanier, “The Gory Antigora: Illusions of Capitalism
and Computers”, Cato Unbound, http://www.catounbound.
org/2006/01/09/jaron-lanier/the-gory-antigora/ , 2006

[8] M. e Maqsood, T. Javed, “Practicum in software project
management: an endeavor to effective and pragmatic software
project management education”, Proceedings of the the 6th
joint meeting of ESEC/FSE on The foundations of software
engineering, ACM, New York, 2007, pp.471-479

[9] J. W. Maxwell, “Using Wiki as a Multi-Mode Publishing
Platform”, Proceedings of the 25th annual ACM
international conference on Design of communication, ACM,
New York, 2001, pp.196-200

[10] B. Meyer, “Software Engineering in the Academy”,
IEEE Computer, 34, IEEE, Piscataway NJ, 2001, pp. 28- 35.

[11] P. Ramadour, C. Cauvet, “An Ontology-based Support
for Asset Design and Reuse”, ENC'08 Mexican International
Conference on Computer Science, Mexico, 2008

[12] E. Ras, R. Carbon, B. Decker, J. Rech, “Experience
Management Wikis for Reflective Practice in Software
Capstone Projects”, IEEE Transactions on Education,
Volume 50, Issue, 4, IEEE, Piscataway, 2007, pp. 312-320

[13] A. Rauschmayer, “Next-Generation Wikis: What Users
Expect; How RDF Helps”, Third Semantic Wiki Workshop. at
ESWC, Redaktion Sun SITE, Aachen, 2009, poster.

[14] J. Rech, C. Bogner, and V. Haas, “Using Wikis to
Tackle Reuse in Software Projects”, IEEE Software, Volume
24, Issue 6, IEEE, Piscataway, Nov.-Dec. 2007, pp.99-104.

[15] P. Roques, F. Vallée, UML en action, Eyrolles, Paris,
2002

[16] D. Schön, Educating the Reflective Practitioner, Jossey-
Bass, San Francisco, 1987.

[17] N. Serakiotou and al., “(Wiki + ResTechs) = (Fresh
documentation + Organic Knowledge Management +
Training Materials + Good, Cheap Technical Writers)”,
Proceedings of the 36th ACM SIGUCCS conference on User
services conference, ACM, New York, 2008, pp.173-179

[18] J. E. Tomayko, “Carnegie Mellon's software
development studio: a five year retrospective”, Proceedings
of the 9th Conference on Software Engineering Education,
IEEE, Piscataway NJ, 1996, pp.119-129.

[19] J.E. Tomayko and O. Hazzan,, “Reflection processes in
the teaching and learning of human aspects of software
engineering”, in Proceedings of 17th Conference on Software
Engineering Education and Training, New York: IEEE Press,
pp. 32- 38, 2004

[20] W3C, SKOS Simple Knowledge Organization System
Reference, ERCIM, Sophia-Antipolis, 2008.

[21] Working Group on Guidelines for Multilingual Thesauri,
Guidelines for Multilingual Thesauri, IFLA, The Hague,
2005.

[22] Wiki patterns, http://www.wikipatterns.com/ (last
accessed January 29th, 2009).

