Superresolution Imagery Based SVM Classification of Radar Targets

Abstract : Automatic target recognition using SVM (Support Vector Machine) in the context of an anechoic chamber experiment is presented in the paper. The targets are first imaged using MUSIC-2D (Multiple Signal Classification) algorithm and their shapes are then extracted using ADC (Active Deformable Contours). The feature vector includes the Fourier descriptors calculated from the target shapes. The classification is finally performed by a RBF kernel based SVM classifier. It is compared to a standard KNN (K Nearest Neighbors) classifier in terms of classification accuracy and robustness.
Type de document :
Communication dans un congrès
EUSAR 2006, May 2006, Dresde, Germany. pp.1-4, 2006
Liste complète des métadonnées

http://hal.univ-brest.fr/hal-00485825
Contributeur : Emanuel Radoi <>
Soumis le : vendredi 21 mai 2010 - 18:14:55
Dernière modification le : mardi 16 janvier 2018 - 15:54:25

Identifiants

  • HAL Id : hal-00485825, version 1

Citation

Emanuel Radoi, Felix Totir, André Quinquis, Lucian Anton. Superresolution Imagery Based SVM Classification of Radar Targets. EUSAR 2006, May 2006, Dresde, Germany. pp.1-4, 2006. 〈hal-00485825〉

Partager

Métriques

Consultations de la notice

79