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Equations (Ll), (1.6), and (1.8) imply that A.4) is valid with p(6)  
given by 

APPENDIX II 
PROOFS OF (4.19) AND (4.20) 

Proofof(4.19): We shall prove (4.19) by contradiction. If(4.19) 
does not hold, then there exists a pair of a positive number 6 
and a positive integer L’, such that llWmll 2 6 for m 2 L’. 
Then (4.18) implies that llWm+lll 5 llWmll - clp(6)m-l for 
m 2 max(L4(6), L‘). This implies that llWmll ---t -cc as m + CO 

which is not valid. Hence, (4.19) holds. 
Proofof(4.20): Using (4.18) with 6 being replaced by $, one 

obtains V6 > 0, V m  2 L4 (p) 

Using (3.4) and (3.6) with k = km+l implies that IIWm+l -WmII 5 
dlm-’ for m 2 Lz. Therefore, V6 > 0 there exists &(6) such that 
V m  2 L6(6) 

Equation (4.20) follows immediately after (II.1) and (II.2). 
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Optimum Choice of Free Parameter 
in Orthonormal Approximations 

N. Tanguy, P. W E ,  and L. C. Calvez 

Abstract-This correspondence investigates the choice of a free param- 
eter, usually related to time scale, that minimizes the error energy when 
approximating a given signal with some widely used orthonormal basis 
functions. The proposed solution is the hest that can be achieved with the 
limited required knowledge of the signal. It is appealing for experimental 
data for which no exact mathematical expression is available. 

I. INTRODUCTION 
In recent years there has been renewed interest in the use of 

orthogonal functions in approximation, modeling, filtering, identifi- 
cation, and control. Particularly, the discrete Laguerre functions, a 
complete orthogonal set on l 2 [0 ,  CO) have been considered often. Any 
arbitrary causal signal of finite energy, e.g., an impulse response, can 
be expanded into an infinite series of orthogonal Laguerre functions 
which involve a free parameter, closely related to the time scale. In 
theory, when infinitely many terms are used in the expansion, the 
choice of the parameter is somewhat arbitrary. In practice, however, 
a truncated series is used, and an immediate design problem is to 
optimally select the free parameter so as to minimize the truncation 
error. With a view to minimizing the error energy, Masnadi-Shirazi 
and Ahmed [2], [3] have derived an analytical approach which 
requires finding real roots of possibly high order polynomials, lying 
in the interval IO, l[. For numerical approaches, see references given 
in [3]. 

In a recent publication, an alternative way has been presented by 
Fu and Dumont [l]. The idea is to minimize a performance index J 
defined as a linearly weighted sum of squared Laguerre coefficients. 
Intuitively, enforced convergence rate is then expected. A great merit 
of this technique is that it yields an analytical solution, requiring only 
a few numerical characteristics of the signal under consideration. The 
purpose of the present correspondence is twofold: first, to show that if 
the number of basis functions to be used is chosen large enough, then 
the performance index J proposed in [l] is related to an upper bound 
of the error energy, and second, to offer a general method which 
applies to a wide class of continuous or discrete time orthonormal 
basis functions. 

II. DEVELOPMENT 
To achieve a unified treatment, valid for both continuous- and 

discrete-time signals, inner product notation will be used. Let m(t) 
denote a nonnegative weighting function of the real variable t defined 
over some finite or infinite interval [to,  t r ] .  Given two well-behaved 
real-valued function f ( t )  and g ( t )  of the real variable t defined over 
[ to ,  t ~ ] ,  it is assumed that their inner product is defined, according to 
the nature of the problem under consideration, through the following 
integral 

(f, 9) i& 1‘’ m(t)f(t)g(t) dt  (la) 
t 0  
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or through the following discrete sum 

where t , ( i  = O , l , .  . . ,I) denote discrete points in [ to ,  t ~ ] .  
Since any orthogonal system of functions can be readily normalized 

by dividing each member of the set by its norm, we shall consider 
orthonormal functions yn (t, a) satisfying 

where a denotes a free parameter to be optimally selected. This 
parameter may be a scale factor as in continuous-time Hermite 
functions 'H, (at) or some real number as in discrete-time Charlier 
functions Cn (t, a). 

To be more precise, suppose that f ( t )  is a well-behaved real-valued 
signal which can be represented by the infinite expansion 

n=O 
(3 )  

where, from the classical theory of orthonormal expansions 

Consider the practical truncated series 

N - 1  

n = O  

which, for a given a, is known to be the best N-terms approximation 
to f ( t )  in the sense of minimizing the relative weighted quadratic 
error Y N ( ~ )  t I I j  - f 1 1 2 / 1 1 f 1 1 2 .  Using llfllz A (f,f) and the 
orthonormality property (2) it is a standard exercise to show that 
the following holds 

m I N - 1 

Usually, the quadratic error can be reduced further by a proper choice 
of the free parameter a as shown in the following. 

A key point in the development of the proposed method is the 
observation that several continuous- or discrete-time orthonormal 
functions widely used in signal modeling and related to the so-called 
classical orthogonal polynomials satisfy the noteworthy equation [4], 

(7) 

r51 

L z p n  ( t ,  a )  = X(n)pn ( t ,  a )  

with La denoting a linear operator defined as 

where the coefficients A, B ,  and C which are characteristic of the 
set { p n ( t , a ) }  depend on the time and the parameter a but are 
independent of n. In the context of continuous-time signals, V ' f ( t )  
stands for the ith derivative d'f /dt'  while in the context of discrete- 
time signals, D * f ( t )  $ f ( t  + i - 1). As for the X(n) they are 
independent of t and form a sequence of increasing numbers 

X(0) = 0 < X(1) < X(2) < X(3) < . . . , 

Until further notice, we assume p n ( t , a )  satisfies (7). With this 
equation in mind, applying the linear operator C, to (3) yields 

m 

n =O 

now, using the linearity property of the inner product which is 
assumed to exist, on account of (4), we obtain 

OD 03 

n = O  n=N 

which gives an upper bound for Q.V (a) in (6) 

where F ( a )  is a mathematical expression defined by 

which bears some information about the signal f. When this signal 
is known via experimental data, F ( a )  can be readily determined by 
computer. 

Since y . ~  (a) cannot be greater than unity, notice that to get a useful 
bound, N must be great enough to ensure X ( N )  > F ( a ) .  

Denoting by CF the class of signals with given F ( a ) ,  it is a simple 
matter to prove the existence of a signal f E CF that achieves the 
bound in (10). Assuming 0 < F ( a )  < X ( N ) ,  let 

therefore f is in class C F .  Using (6), y ~ ( a )  = F ( a ) / X ( N )  and 
consequently the bound in (10) is the best that can be achieved when 
the specification of the signal f is limited to the knowledge of F (  a). 
In this case, the best choice of the parameter a is that value a0 

which minimizes F (  a) and the maximum error over the class of all 
signals in CF is then F(ao) /X(N) .  It is worth noting that the optimal 
parameter a0 is independent of the number N of basis functions to be 
used. Thus, a0 can be computed in a first time and A' can be chosen 
afterwards: for instance, one can choose N such that the upper bound 
F ( a o ) / X ( N )  is small enough or such that the exact y ~ ( a 0 )  in (6) 
is small enough. 

Remark 1: Frequently, we have X(n) = n; this is, for example, 
the case for Hermite, Laguerre, Charlier, and Meixner functions. 

Remark 2: Because X(n) = n, the performance index J proposed 
in [ 11 in the particular case of discrete Laguerre functions expansions 
is seen from (9) and (11) to be related to F ( a )  by Ilfll'[F(a) + 11, 
thus minimizing J is equivalent to minimizing the maximum error 
encountered for the equivalence class of signals with given F ( a ) .  

Remark 3: By considering the particular case of continuous time 
Laguerre functions p n ( t . a )  = @,(at) and the appropriate C, 
one obtains Parks' method [6]; notice that this method can be 
somewhat extended by considering exponentially weighted Laguerre 
functions. 

III. ILLUSTRATIVE EXAMPLE 
Let pn(IC,a) $ bktn(lc ,a)  denote weighted discrete Laguerre 

functions where an (IC, a) stand for the Laguerre functions used in [2], 
[3], and [7]; the definition of [ 11 differs by one unit delay. Functions 
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pn (k, a )  are orthonormal on [0, ca) with respect to the weighting 
function a ( k )  = bPZk.  The use of weighted Laguerre functions 
( b  > 1) has the advantage that it may achieve a better approximation 
to the initial transient response than nonweighted functions (b = 1). 

Problem Statement: Given b 2 1 and a discrete signal f( k)  with 
known “moments” 

k = l  
00 

k = l  

where 
m 

k=O 

find the free parameter a = a such that the weighted sum of the 
squares of the errors is least. 

Using for example the Z-transform 

L‘ 
k=O 

it is a standard exercise to show that the following holds 

L a p n ( k , a )  = ny , (k .a)  

where L R f ( k )  = - : ~ ~ R 1 ~ ~ b f ( k + l ) +  k ( 1 + R 2 ) + R 2  I P R 2  f ( k ) - * f ( k -  
1) which is in the form of (8) with t = k (discrete time). Using the 
last expression for La f and definition (1 1) one obtains 

(1 + m l ) a 2  - 2m2a + ml 
1 - a2 

F ( a )  = 

Let p = (2m1 + 1)/(2m2) for which it can be shown that IpI 2 1 
is always true. The optimal value of a minimizing F ( a )  is then 

a0 = p - &ri 
which results in a Laguerre parameter that minimizes the maximum 
of the normalized mean square error over the class of all signals with 
given F ( a ) ,  i.e., with given ml and m2. The minimum of F ( a )  may 
be written 

[(I + m1)p - mz]ao - 0.5 
1 - pa0 

F(ao)  = 

and provided N 2 F(ao) ,  for any signal with given ml and m2, the 
relative weighted quadratic error is qN(a0) 5 F ( a o ) / N .  This last 
bound is the tightest bound derivable with knowledge of the signal 
limited to m l  and m2. 

Remark: Moments ml and m2 defined above are preferred to 
M I  and M2 of [l] which bear identical information but require the 
superfluous extra evaluation of A f (k )  = f (k  + 1) - f ( k )  for each k. 

Numerical Example: Consider the discrete signal [7, Example 3.21 

f ( k )  = -(0.2)k + 0.5(0.3)k + 3(-0.5)k - 1.5(0.9)k 

Using b = 1, let the moments be computed from the numerical values 
of f(k); these are obtained as ml = 3.40103 and m2 = 2.91636 
which yields a0 = 0.4492 to be compared with ab = 0.4305 which 
is the optimal value computed in [7], for an eight-terms Laguerre 
approximation, via solving polynomial equations of degree 31 and 
35 for roots in 10, 1[ and subsequently retaining that root which 
gives the smallest value for the error energy. 

Using the method in [l] yields a0 = 0.4492 as above which is not 
surprising since, in the particular case of Laguerre expansion with 
b = 1, minimizing J is equivalent to minimizing F ( a )  (see Remark 
2). 

IV. CONCLUSION 
With a view to selecting a free parameter in orthonormal ap- 

proximations, a quite general and easy-to-use procedure has been 
proposed. It does not require complete specification of the signal 
to be approximated and is thus suited to problems dealing with 
experimental data. The resulting parameter is the best that can be 
achieved with the limited required knowledge of the signal. 
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Adaptive Control of Partially Known Systems 

Gang Tao 

Abstract- We first present modied parameterizations for model 
reference adaptive control of linear plants with partial knowledge of the 
stable zero or pole dynamics. The modied adaptive controllers reduce 
the closed-loop system order by 2nr where nr is the order of the known 
dynamics. We then apply such parameterizations to the adaptive inverse 
control of plants with unknown nonsmooth nonlineanties such as a dead- 
zone, backlash, or hysteresis at the input or output of a Linear part whose 
stable zero or pole dynamics are partially known. The modified designs 
for nonlinear plants aPchieve an order reduction 2n,p where p is the 
number of parameters of the input or output nonlinearity. 

I. INTRODUCTION 
In adaptive control systems, parameter adaptation enables the 

controller to handle large modeled plant uncertainties. The knowledge 
of the order of the modeled plant whose parameters are unknown 
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